# High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits in Wildcat Sedimentary Basins

Adil Özdemir<sup>1</sup>, S. Orkun Turgay<sup>2</sup> and Alperen Şahinoğlu<sup>3</sup>

<sup>1</sup> Adil Özdemir Consulting, Ankara, Turkey (adilozdemir2000@yahoo.com) <sup>2</sup>İskenderun Technical University, Petroleum and Natural Engineering Department, Hatay, Turkey <sup>3</sup>İstanbul Rumeli University, Graduate School of Natural and Applied Science, İstanbul, Turkey Corresponding Author: Adil Özdemir

**Abstract:** In the wildcat sedimentary basin which will be explorated oil and gas, to increase the possibility discovery of find of commercial oil and gas must be benefit from approximately 90 years of experience in petroleum hydrogeology. These methods provide considerable simplicity especially in geological and geophysical surveys on illuminating subsurface geology. The HYDROPET is a new computer software was developed by authors to contribute to oil and gas exploration, especially in geologically complex and wildcat sedimentary basins. The program is developed with chemical and isotopic classification, analysis and interpretation methods proposed by a large number of different researchers based on water chemistry analysis data. This study includes test results in known oil and gas production fields that composed of different and complex geological structures. Results of the program and the data of the known oil and gas production fields are same. Program allows basin/field-scale interpretation based on water chemistry data show that especially in geologically complex and wildcatsedimentarybasins, location of oil and gas deposits and properties of petroleum geology and subsurface geology can be estimated with high accuracy.

Keywords: Oil and gas exploration, oilfield waters, formation waters, hydrochemistry, HydroPet software

Date of Submission: 25-07-2018 D

Date of acceptance: 08-08-2018

#### I. Introduction

The rocks are tilted and bending by the plate tectonic forces and gravity. As a result of these geological events, many petroleum trap and cover rock types occurred. Understanding the formations of these trap types helps to identify potential reservoirs of oil and gas. The main purpose of oil and gas exploration is to estimating these hidden oil and gas reservoirs in complex terrain conditions. So, the information be obtained by drilling is be critical. Because drilling provides direct information on oil and gas traps. But, the drilling data only provide information on the geological features of the locality where it is made.

Oil and gas traps can be determined by conventional geophysical methods (especially seismic). But, no information can be obtained about whether there is oil or gas in the field or basin where it is applied. Also, application of conventional methods such as drilling and seismic survey are difficult and expensive, especially in the case of complex geological and topographical distressed terrain conditions. In this case, geochemical exploration methods are the most effective ways to increase oil and gas exploration efficiency and reduce exploration costs. Because, the components that are determined by geochemical methods are only found together with hydrocarbon accumulations, or are derived from them. Therefore, data which are obtained from geochemical exploration studies are evidence of the presence of oil and gas in basins and traps. Anomaly maps (target areas for geophysical measurements and/or drilling) with these data obtained from geochemical exploration methods emerge. To prepare these maps, are a result of oil and gas exploration in wildcat sedimentary basins and the experiences in the sector since today.

Investigation into the groundwater setting is an important issue in petroleum potential assessment in various regions at different stages of exploration (Kurchiko and Plavnik, 2009). In a wildcat sedimentary basin, ateam engaged in oil and gas exploration should focus on areas that is permeable unit which is under the non-permeable geological strata keeps oil and gas. Because, connate waters are more important than other water types for oil and gas exploration. In oil and gas exploration, thousands of water samples and geological structures of oil and gas fields studied by many researchers (e.g. Sulin, 1946; Chebotarev, 1955; Schoeller, 1955; Vel'kov, 1960; Bojarski, 1970; Schoeneich, 1971 and Wei et al., 1996) for the useage of water geochemistry have been examined, different classification methods have been developed. All of these researchers focused on the determination of with the water geochemistry data and the presence of oil and gas in basins and estimating the location of hydrocarbons reservoirs in the basin. The authors compared the methods suggested by these researchers with data from oil and gas production fields around the world. Comparing with results have been determined to be directly

compatible with the results of known oil and gas fields. During these studies, the conclusion that the manual feasibility of the calculations in the proposed numerical classification methods in these methods is impractical (maybe because of the difficulty of working with so many numerical methods, the usage of the methods is limited). To develop a computer program that useful results and includes isotopic methods as a whole with these chemical classification methods seen in the tests made by the authors are intended. The HYDROPET is a new computer program developed by authors to contribute to oil and gas exploration, especially in geologically complex and wildcat sedimentary basin. Software is developed with chemical and isotopic classification, analysis and interpretation methods proposed by a large number of different researchers based on water chemistry analysis data.



Image. 1. Main screen view of Hydropet program

In this study, the authors aimed to share with the sector stakeholders the experience gained up to now in the field of oil and gas exploration during the preparation and development stages by the hydrogeochemical methods of HYDROPET program.

### II. Hydrochemical Exploration for Minimizing Oil and Gas Exploration Risk and Cost

Sustainability of oil exploration and production projects is possible by first evaluating the availability, quantity and economic potential of oil, which primarily fills the reservoir rock pores with water. Therefore, after the formation of oil and migration, starting with the water, which is the first fluid inlet to the pores of the reservoir rock, and their association with the millions of years, it is obligatory to determine the basic qualities of the water in order to understand the existence of hydrocarbons. Water, the first agent to fill the voids of the rock during sedimentation, reflects other physicochemical properties, primarily salinity of the sedimentary environment (Çoban, 2017). Assuming that oil and gas originated from dispersed organic matter, the accumulation into pools is possible only by migration through waterfilled porous rocks. Fundamentally there are two possibilities: (a) accumulation in a stagnant water system, that means under hydrostatic conditions (b) accumulation along with mobile water, that means under normal geological conditions with the helps of water. Assuming that the accumulation in a stagnant system is theoretically possible, it is certain that water currents of a hydrodynamic system would be much more effective if the release of the dissolved matter is kept (Meinhold, 1972).

Gas, oil and water is collocating in subsurface. Because of the density of petroleum is less than the density of salt water, the petroleum layer on the oil traps is above the layer where the salt water is. In oil traps (usually called anticlines), water beneath the petroleum is salty water and represents the sea water (fossil marine water) at the time of the oil formation. In the operated oil wells, when the oil in the petroleum strata decreases, the following

salt water invades oil deposits. So, after a while, the oil starts to withdraw from the wastewater with very little oil and salt water, and when the bed "economy" loses its condition, it is deactivated in terms of well production (Fig. 1).



Fig. 1. Relationship between oil, gas and water in an anticline trap

Formation water is a constant companion of petroleum shows and deposits, thus providing useful related information (Mazor, 2004):

- Identification of formation waters that are possibly associated with nearbypetroleum deposits: Formation waters that are associated with petroleum differ from regular formation waters by their detectable concentrations of petroleum compounds. This provides a tool for petroleum exploration. The potential of this method is high as formationwaters are encountered along all deep drilling operations. Highconcentrations of petroleum compounds raise the prospect of finding associated petroleum deposits.

- Understanding and mapping the structure of individual petroleum fields: Oil and gas fields are heterogeneous, composed of separated petroleum-containing rock-compartments interwoven with only water-containingcompartments. The detailed structure of every field can be mapped by the properties of the water as well as the petroleum occurrences. Information of this kind is essential in placing central production plants and siting of new wells.

The fact that companies do not use thousands of water analyzes and well test results in the determination of new search areas and investment decisions is not the only way to determine the location of wells on the basis of physicochemical and hydrodynamic data, but instead of a few seconds difference in seismic sections alone. This demonstrates the necessity of petroleum hydrogeology assessments to be used in combination with the structure of well sites in a rational way, when close to each other and taking into account the results of most unsuccessful wells. The solution of this fundamental defect in oil exploration is possible by the identify new exploration areas and the well oppenings or by evaluating water physicochemical, salinity and hydrodynamic data together with structural data. Authors should underscore to the fact that this development will enable the development of the sector's upper arm activities on a successful and economic basis, by exploring the oil exploration and production based on scientific data and oil and gas discovery with a high probability of exploration (Çoban, 2017).

Pirson (1942) determined the success ratios for the followingexploration methods: random drilling, 5.8%; geology, 8.2%; geophysics, 14.9%; and geochemistry, 57.8%. Basically, the separation of the geochemical anomalies from background is very important in order to interpret the hydrocarbon accumulations zones. The active neotectonic (dynamically "excited", "unbalanced") geologically complex basins of the Alpine mobile belts, the implementation of the standard exploration strategy and techniques rooted in the half-century-oldexploration empirics within relatively simple, tectonically "quiescent" platform regions with the dominating old foursome of "source rocks/traps/reservoir rocks/seals" turns out to be costly and often unsuccessful. A most telling example is the South-Caspian Basin (SCB). There is largest western transnational companies and consortia, working under the PSA arrangements from 1995 through 2008, drilled 28 exploratory wells, up to 7,301 m deep (almost 24,000 feet). The wells were spudded on thestructures deemed highly potential and preliminarily subjected to high-resolution 3D seismic surveys. The effort cost about \$1 billion and did not result in a single commercial discovery. Geologically complex oil and gas basins within the Alpine mobile belts in most cases have an exceedingly great number of distinctive features (Rachinsky and Kerimov, 2015).

The close association of hydrocarbon accumulations with subsurface waters has led to the use of properties of these waters as a secondary exploration tool. Both chemical and physical characteristics of subsurface waters have been utilized in the exploration for petroleum. The movement of subsurface waters are made a significant contribution to the accumulation of petroleum. In addition to dissolved organic and inorganic constituents, hydrodynamic movement, oxidation-reduction potentials, and water classification systems have been advocated for use in petroleum exploration (Ostroff, 1975). Identification of water category encountered or expected in an accumulation is very important. It affects the field development strategy, well pattern, production techniques, reservoir management, drilling, and workover operations. These issues are solved taking into account hydrogeologic conditions not just in a single accumulation but in the entire field. Most important is information about changing hydrogeologic environment in that field. Information about the pre-development hydrogeologic

(hydrodynamic and hydrochemical) environment is crucial. Hydrogeologic studies during the petroleum exploration are also very important and data for solving the mentioned problems should be collected during this stage. Significant issues during the exploration stage are: (1) Identification of independent hydrogeologic systems in the basin being studied; (2) hydrodynamic drives occurring in each one; (3) their hydrodynamic and geochemical evolution; (4) the identification of hydrodynamic and geochemical anomalies as indicators of cross-flows between various horizons; (5) the distribution of the normalized pressure within the identified hydrogeologic stages, in the section and laterally; (6) the identification of locations for possible hydrocarbon traps and patterns in their distribution; and (7) analyzing the concepts of hydrocarbon migration in the basin and the formation and destruction of hydrocarbon accumulations (Chilingar et al., 2005).

The purpose of hydrogeochemical exploration methods is to find direct and indirect markers of oil and gas deposits where commercial discovery can be made in areas where hydrocarbon potential is unknown or little known, and to estimate the oil and gas presence a general or specific scale in the region and the most promising regions on a general or specific scale. These investigations are particularly more important in areas where the geological structure is not well known, particularly with the information on the presence or absence of oil and gas in the basin. Because, hydrogeochemical investigations also show geological structure. The examination of structural conditions from hydrogeochemical indicators will naturally facilitate the exploration of oil and gas. Today, hydrogeochemical investigations are carried out primarily in areas where many cold-and-hot springs are present. But, the oil and gas potentials were continued in uninvestigated regions in detail. These hydrogeochemical data are very valuable in areas where there are many natural spring waters and shallow and deep wells drilled for different purposes. Also the composition of groundwater is known by the analysis results and geological structure is relatively well known. Because, hydrogeochemical investigation is based on the interpretation of data which are obtained from existing analysis of water already existing for different purposes and new analyzes to be made if necessary. Hydrogeochemical maps are prepared from these water analysis data and maps predicting the oil and gas potential of the region are evaluated. Later, regions where commercial oil and gas exploration are estimated are classified (Figs, 2 and 3).



**Fig. 2.** A hydrogeochemical map: 1. No. of water point and chemical composition formula by the component precedence; zones of water distribution with composition: 2. HCO<sub>3</sub>-Cl-Na,Cl-HCO<sub>3</sub>. Na; 3. Cl-Na; 4. Cl-Na-Ca; 5. Cl-Na-Ca; 6. Zone boundary (Tikhomirov, 2016)



Fig 3. Map for predicting petroleum from the composition of water. The numbers indicate the importance of the regions (Kartsev et.al, 1954)

The main criterion used is the degree of stagnancy of the water. One should however, keep in mind that the prediction of commercial value of individual oil and gas bearing zones on the basis of hydrochemical indicators alone is not sufficient because the reservoir properties of the rocks are not taken into account. The investigations of Sukharev (1948) shows in some cases it is possible not only to predict oil and its commercial value but also to predict the nature of the deposits in a given zone (Kartsev et al., 1954). Even though it is not possible to precisely estimate the economics of a groundwater based approach in petroleum exploration, a cost-saving of up to 50% in regional surveys on continental areas may be expected and there is a strong case for a field-test of the concepts (Toth, 1987).

#### III. Definition, Classification and Evolution of Oilfield Waters

Many chemical classifications have been proposed or discussed by Roger (1917), Tolstikhin (1932), Piper (1944), De Sitter (1947), Durov (1948), Sulin (1946), Vassoyevich (1954), Chebotarev (1955), Schoeller (1955), Rainwater and White (1958), Chave (1960), Eremenko (1960), Hounslow (1995) and Rosental (1997), to mention just a few investigators. The water classifications have been reviewed in Chilingar (1957, 1958), Chilingar and Degens (1964), Samedov and Buryakovsky (1966), Collins (1975), Lawrence and Cornfordt (1995), Boschetti (2011), Boschetti et al. (2014) ve Engle et al. (2016).

Waters can be classified in a number of ways. Most commonly they are grouped according to the following criteria (Roger, 1917): (1) water origin - meteoritic, connate, or juvenile waters, (2) water chemistry, e.g., bicarbonate, sulfate, or chloride waters, and (3) total water salinity, i.e., fresh water, saline water, or brine water.

Meteoric water; White (1957) defined it as water that was recently involved in atmosphere circulation and further that "the age of meteoric groundwater is slight when compared with the age of the enclosing rocks and is not more than a small part of a geologic period."

Sea water; The composition of sea water may vary somewhat, but in general will have a composition relative to the following (in mg/l): chloride - 19,375, bromide - 67, sulfate - 2,712, potassium - 387, sodium - 10,760, magnesium - 1,294, calcium - 413, and strontium - 8 (Collins, 1975).

Interstitial water; Interstitial water is the water contained in the small pores of spaces between the minute grains or units of rock. Interstitial waters are: (1) syngenetic (formed at the same time as the enclosing rocks); or (2) epigenetic (originated by subsequent infiltration into rocks) (Collins, 1975).

Connate water; The term connate implies born, produced, or originated together. Therefore, connate water probably should be considered to be an interstitial water of syngenetic origin. White (1957) called connate water of this definition a fossil water, i.e., water that has been out of contact with the atmosphere for at least a large part of a geologic period. As White (1957) pointed out the implication that connate waters are only those "born with" the enclosing rocks is an undesirable restriction.

Diagenetic water; Diagenetic waters have changed chemically and physically, both before, during, and after sediment consolidation. Some of the reactions that occur in or to diagenetic waters include bacterial, ion exchange, replacement (dolomitization), infiltration by permeability, and membrane filtration (Collins, 1975).

Juvenile water; Water is existed in primary magma or derived from primary magma is juvenile (White, 1957).

"Formation water" is a term for water, saline or otherwise, present within the pore spaces of a sedimentary rock, and can include locally recharged waters of meteoric origin as well as that originally present when the sediment was deposited. Pore waters are ubiquitous in sediments and sedimentary rocks and exhibit significant variation in composition (Houston, 2007). Formation waters in sedimentary basins are dominantly of local meteoric or marine connate origin. However, bittern (residual) water, geologically old meteoric water, and especially waters of mixed origin are important components in many sedimentary basins (Table1; Kharaka ve Hanor, 2007).

| Adopted         | Subgroup        | Sub-       | Other group        | ings              | Comments                                          |  |  |
|-----------------|-----------------|------------|--------------------|-------------------|---------------------------------------------------|--|--|
| grouping        | 0               | subgroups  | 0                  | 0                 |                                                   |  |  |
|                 | Formation water | Pore water | Interstitial water | Oil field brines, | Trapped during sedimentation e.g.                 |  |  |
|                 |                 | Diagenetic |                    | connate           | from clay dehydration                             |  |  |
|                 |                 | water      | Products of        | waters            |                                                   |  |  |
| Internal fluids | Hydrocarbons    | Gas        | diagenesis         | Petroleum         | Both bio- or<br>thermogenic methane<br>recognized |  |  |
|                 |                 | Oil        |                    |                   | Thermally degrades to solid bitumen and gas       |  |  |
|                 |                 | 'Solid'    |                    | 'Plastic          |                                                   |  |  |
|                 |                 | bitumens   |                    | solids'           |                                                   |  |  |

**Table 1.** A synthesis of nomenclature describing geofluids (Lawrence and Cornfordt, 1995)

|                 | 'Fluid' rocks        |                                  |            |              | Once fluid/plastic flow<br>e.g. Salt or shale<br>behaving as fluid |
|-----------------|----------------------|----------------------------------|------------|--------------|--------------------------------------------------------------------|
|                 | Anthropogenic        | Surface water                    |            |              | e.g. Drinking water, effluent                                      |
|                 | Meteoric or artesian | Precipitation                    |            |              | Contains dissolved air and bacteria                                |
| External fluids | water                | Tectonically<br>'uplifted' water |            | Hydrothermal | Pore water                                                         |
|                 |                      |                                  |            |              | Lakes etc.                                                         |
|                 | Metamorphic          | Water                            |            |              | From dehydration                                                   |
|                 |                      | Gases                            |            |              | reactions e.g. H2, CH2,                                            |
|                 |                      |                                  |            |              | CO <sub>2</sub> ,                                                  |
|                 |                      |                                  |            |              | H <sub>2</sub> S (dissolved)                                       |
|                 | Mantle               | Water                            | Primordial |              | Often chemically                                                   |
|                 |                      |                                  |            |              | reactive                                                           |
|                 |                      | Methane                          |            |              | Never known to be                                                  |
|                 |                      |                                  |            |              | commercial                                                         |

If a fluid is defined as 'that which flows', then heat and energy might appear in this table. Connate water is defined as 'water that has not been exposed to the atmosphere since "deposition". Pore water is sometimes called 'interstitial water', which can include diagenetic contributions.

Produced water; Any water produced from a hydrocarbon well, including flowback water, formation water, injected fluids, water condensing from the gas phase, and mixtures (also referred to as co-produced water) (Engle et al., 2014).

Flowback water; During the development of unconventional resources such as shale gas or tight oil, a fracturing fluid and a proppants are injected into the reservoir under high pressure in order to create fractures to increase rock porosity and permeability. Flowback water consists primarily of the injected water and is generated in the first few days to weeks following hydraulic fracturing (Engle et al., 2014).

Deformation is an important part of the dynamic evolution of basins. High deviatoric stress causes faulting and fracturing which usually reflect the fundamental mechanisms of basin formation e.g. (normal faults in rift basins, reverse or thrust hilts in foreland basins, strike-slip faults in 'pull-apart' basins). Faults can operate as both fluid pathways and flow barriers and in this way can contribute to complex 3-D pathways for fluids of different origins in evolving sedimentary basins (Figs., 4,5 and 6; Lawrence and Cornfordt, 1995; Knipe, 1993).



Fig. 4. Schematic model for episodic fluid migration in the fault-zone area (Jin et al., 2008)



**Fig.5.** Fluids internal to basins (A) comprise formation waters (1) initially trapped during sedimentation augmented by water generated during diagenetic and low-grade metamorphic dehydration reactions, together with hydrocarbons (2) generated from organic-rich petroleum source rocks. Externally derived fluids (B) comprise meteoric waters (3) derived from precipitation in areas of topographic elevation, and metamorphic fluids (4) emanating from metamorphic dewatering in zones below and external to the basin. (Note magmatic fluids associated with volcanic activity are included in this category for convenience) (Lawrence and Cornfordt, 1995).



**Fig. 6.** The effectiveness of the various geofluid flow regimes are characteristic of different basin types and settings. Flow regimes and the potential for fluid mixing will evolve with basins as depicted by a plate tectonic (Wilson cycle) evolutionary path from intracontinental rifting through passive margin and ultimate continental collision with foreland basin development (Lawrence and Cornfordt, 1995, see Figure 5).

Since all natural waters are mixtures, it is impossible to classify them rigorously, and any system of classification is a matter of convenience rather of fixed principles. For practical convenience is evident that oilfield waters should be classified as far as possible according to their position in relation to the oil. As waters near the oil measureable difference in composition from those nearer the surface a classification based directly on the chemical character of the waters and indirectly on their position in relation to the oil may be made. This classification may be summarized as follows (Fig. 7; Roggers, 1917):

Group 1. Normal, strongly sulfate water (typically of meteoric origin).

Group 2. Modified, less strongly sulfate water (may be either meteoric or connate but is commonly a mixture in which meteoric water predominates).

Group 3. Altered, practically sulfate-free water (meteoric and connate waters and mixtures of the two).

- Reversed (carbonate water, originally meteoric).

- Mixed (chloride-carbonate water).

- Brine (chloride water, originally connate).



Fig. 7. Diagram illustrating relation of oilfield waters of the meteoric and connate types, and their alteration as the oil zone is approached (Rogers, 1917)

However, there are also basins where fresh waters are associated with the pools. Two cases can observed (Coustau, 1977) :(1) The waters may be meteoric waters which may have invaded the reservoir after the oil migrated into the trap; however, the interstitial water associated with the oil in the predominantly oil-saturated column, is probably salty; one must take into account this phenomenon when water saturation and reserves are considered. An example is the Douleb oilfield in Tunisia. An analysis of the water samples obtained above and below the oil-water contact is shown in Table 2.

| Fable2. Com | parison of water a | alyses - Douleb oi | lfield, Tunisia (values | s expressed in mg/liter | r) (Coustau, 1977) |
|-------------|--------------------|--------------------|-------------------------|-------------------------|--------------------|
|-------------|--------------------|--------------------|-------------------------|-------------------------|--------------------|

| Property                | Water associated with oil | Water below the oil-water contact |
|-------------------------|---------------------------|-----------------------------------|
| Na (mg/l)               | 14,283                    | 2626                              |
| K (mg/l)                | 331                       | 80                                |
| Ca (mg/l)               | 1536                      | 493                               |
| Mg (mg/l)               | 417                       | 87                                |
| HCO <sub>3</sub> (mg/l) | 595                       | 842                               |
| SO <sub>4</sub> (mg/l)  | 2276                      | 1980                              |
| Cl (mg/l)               | 23,315                    | 3189                              |
| Total solids (mg/l)     | 42,753                    | 9297                              |

#### IV. Hydrochemical Classification and Interpretation Methods in HYDROPET Program Sulin (1946) classification

Sulin's characteristic of formation waters is based on the genetic principle (Table 3).

| Table 5. Sum s classification (Tang, 2017) |                                |     |                         |                              |  |  |  |  |
|--------------------------------------------|--------------------------------|-----|-------------------------|------------------------------|--|--|--|--|
| Equivalent                                 | Parameter                      | for | Water type              | Environment                  |  |  |  |  |
| Proportion                                 | judgment                       |     |                         |                              |  |  |  |  |
|                                            | $Na^+ - Cl^- / SO_4^{-2} < 1$  |     | NaSO <sub>4</sub> type  | Continental washing          |  |  |  |  |
| $Na^{+} / Cl^{-} > 1$                      |                                |     |                         | (land-surface water)         |  |  |  |  |
|                                            | $Na^+ - Cl^- / SO_4^{-2} > 1$  |     | NaHCO <sub>3</sub> type | Continental deposit          |  |  |  |  |
|                                            |                                |     |                         | (water in oil-and gasfields) |  |  |  |  |
|                                            | $Na^+ - Cl^- / Mg^+ < 1$       |     | MgCl <sub>2</sub> type  | Marine deposit               |  |  |  |  |
| $Na^{+} / Cl^{-} < 1$                      |                                |     |                         | (water in oil-and gasfields) |  |  |  |  |
|                                            | $Na^{+} - Cl^{-} / Mg^{+} > 1$ |     | CaCl <sub>2</sub> type  | Deep closed construction     |  |  |  |  |
|                                            |                                |     | 1                       | (gasfield water)             |  |  |  |  |

| Table 3. Sulin's classification | (Yang, | 2017) |
|---------------------------------|--------|-------|
|---------------------------------|--------|-------|

(1) Sulfate-sodium ( $Na_2SO_4$ ) type: It represents an environment of continental washing. Generally speaking, this type reflects a weak enclosed conditionon which the oil and gas could not be gathered or stored easily. Most of the land-surface waters belongs to this type.

(2) Bicarbonate-sodium (NaHCO<sub>3</sub>) type: It represents an environment of continental deposit. This type is widely distributed in oil fields and can beutilized as a sign of a good oil-and gas bearings.

(3) Chloride-magnesium (MgCl<sub>2</sub>) type: It represents an environment of marine deposit. This type usually exists in oil-and gasfields.

(4) Chloride-calcium (CaCl<sub>2</sub>) type: It represents an environment of deepenclosed construction. This type reflects a good enclosed condition on which the oil and gas can be gathered and stored easily. This is also a sign of an oil-and gas bearing.

The first two types are characteristic of meteoric and/or artesian waters, the third of marine environments and evaporite sequences, and the fourth of deep stagnant conditions. In the Soviet Union, Sulin's system of water characterization is used as a tool in hydrochemical systems of exploration for oil and gas formations (Kartsev et al, 1954). Sulin (1946) is a Russian hydrogeologist and his suggested classification is widely used in the oil industry in the United States. The Sulin diagram shows that oil interpretation of groundwater by examining the anions and cations of oil can be used as very good markers in determining hydrocarbon accumulations. Researchers have been underestimating that oilfield waters are mostly chloride-calcium and bicarbonate-sodium type water (Çoban, 2017). Knowledge of the type and class plus what Sulin describes as the significant indicators (direct and indirect) appears useful in hydrocarbon exploration studies (Collins, 1975).

#### Schoeller (1955) classification

Schoeller's study of petroleum reservoir waters indicated that a positive IBE is more frequent as the Clincreases. A negative IBE is more frequent as the C1 decreases, and a negative value is predominant in low and normal chloride waters associated with petroleum. In fact, this characteristic appears specific for petroleum reservoir waters since in other subsurface waters a positive index occurs as frequently as a negative index (Table 4). Ancient sea water (connate water) deposited with the sediments usually have IBE >0.129 and a Cl/Na >1.17. Meteoric waters in sedimentary marine rockshave IBE <0.129 and Cl/Na <1.17. Petroleum reservoir waters with an IBE greater than sea water 0.129 also main characteristics Cl/Na >1.17, Cl/Ca >26.8, Cl/Mg >5.13, Mg/Ca >5.24. Petroleum-reservoir waters containing infiltrating meteoric water mixed with ancient sea water have an IBE less than sea water, 0.129, and the characteristics Cl/Na <1.17, the ratio Mg/Ca increases and approaches but never equals 5.24 (Qoban, 2017; Collins, 1975).

| Cl > Na | IBE = (Cl - Na + K) / Cl                     |
|---------|----------------------------------------------|
| Na > Cl | $IBE = (Cl - Na + K) / SO_4 + HCO_3 + CO_3)$ |

| Га | <b>ble 4.</b> IBE val | ue calculation | (Çoban, | 2017; | Collins, | 1975 | ) |
|----|-----------------------|----------------|---------|-------|----------|------|---|
|    |                       |                |         |       |          |      |   |

#### Chebotarev (1955) classification

Chebotarev, classified waters on the basis of dissolved bicarbonate, sulfate, and chloride, and he does not consider the acid waters or those that contain free sulfuric or hydrochloric acid. His fundamental assumption is that the anions are independent variables while the cations are dependent. According to Chebotarev's classification hydrodynamical and hydrostatical conditions are most important to accumulation of hydrocarbons at reservoir in this situation and its motion status is hydrodynamical conditions. Chebotarev also given geological structure and relative depth for related sample for related water/hydrocarbon reservoir (Fig. 8). Chebotarevapplied his classification to 917 subsurface waters in oilfields in the world. The classification indicated that 73.7% of the waters were of the chloride genetic type, 23.0% of the bicarbonate type, and 3.3% of the sulfate types are associated with oil and gas bearings.



| Malananan   |     |                                                 |       | Reacting value in per cent |            |             |              |               | Products derived from                                                    |
|-------------|-----|-------------------------------------------------|-------|----------------------------|------------|-------------|--------------|---------------|--------------------------------------------------------------------------|
| of water    | Gen | Genetic types of water                          |       | Cl                         | SO4        | C1 +<br>SO4 | HCO3<br>+ Cl | HCO3<br>+ SO4 | weathering of:                                                           |
| Bicarbonate | I   | Bicarbonat (Alkaline)                           | >40   | -                          | -          | <10         |              | -             | Igneous/metamorphic rocks                                                |
|             | п   | Bicarbonate-chloride<br>(Alkaline-saline)       | 30-40 | -                          | -          | 10-20       |              | -             | Igneous/metamorphic derived<br>silicates and calcareous<br>accumulations |
|             | ш   | Chloride-bicarbonate<br>(Saline-Alkaline)       | 15-30 | -                          | -          | 20-35       |              | -             | Calcareous accumulations                                                 |
| Sulphate    | IV  | Sulphate-chloride (Saline)<br>Sulphate (Saline) | 5-15  | <25                        | >25<br>>40 |             | <10          | -             | Alluvium/gypsum                                                          |
| Chloride    | ш   | Chloride-bicarbonate<br>(Saline-alkaline)       | 15-30 | >20                        | -          | -           | -            | -             | Calcareous accumulations                                                 |
|             | IV  | Sulphate-chloride (Saline)                      | 5-15  | >20                        | -          | -           | -            | <25           | Alluvium and gypsum                                                      |
|             | v   | Chloride (Saline)                               | <5    | >40                        | -          | -           | -            | <10           | Marina sediments                                                         |

| Hydrodynai                      | mic zones              | Geochemistry of water Geologi |                                  |                 | eological environment        |                                                   |                                                            |                            |
|---------------------------------|------------------------|-------------------------------|----------------------------------|-----------------|------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------|
| Recharge-<br>discharge<br>cycle | Water-<br>exchange     | Classes                       | Hydrochemicalfacies              | Salinity<br>(%) | Common<br>terms for<br>water | Structures                                        | Relation to<br>water                                       | Depth (m)                  |
| Zone of<br>recharge             | Active<br>exchange     | I, II<br>(sometimes           | Low salinefacies                 | 0 - 2           | Fresh                        | Different                                         | Intensive<br>flush                                         | Usually less<br>than 150 m |
|                                 |                        | Ш)                            | Transitional (typical)<br>facies | 2 - 9           | Brackish                     | Deep portions<br>of<br>structures with            | Delayed<br>flush                                           | Sometimes                  |
|                                 |                        |                               | High salinefacies                | 9 - 35          | Saline                       | peculiar<br>geochemical<br>environment            | Hampered<br>flush                                          | 1550 - 2100 m              |
| Zone of<br>pressure             | Delayed<br>exchange    | III ve IV                     | Low salinefacies                 | 0 - 0.2         | Fresh                        | Different                                         | Inadequate                                                 | Usually less<br>than 300 m |
| ,                               |                        |                               | Transitional (typical)<br>facies | 0.2 - 1.1       | Brackish                     | _                                                 | flush                                                      |                            |
|                                 |                        |                               | High salinefacies                | 1.1 - 3.8       | Saline                       | Deeper portions<br>of structures,<br>folded zones | Circulation<br>anddrainage<br>limited                      | Sometimes<br>900 - 1200 m  |
| Zone of<br>accumulation         | Stagnant<br>conditions | v                             | Low salinefacies                 | 0 - 0.25        | Fresh and<br>Saline          | Different                                         | Salt<br>accumulation                                       | Different                  |
|                                 | concinent              |                               | Transitional (typical)<br>facies | 0.25 - 0.7      | Saline and<br>brine          | Deeper portions                                   | prevails<br>upon leaching                                  | Sometimer                  |
|                                 |                        |                               | High salinefacies                | 0.7 - 1.9       | Brines                       | highly folded<br>zones                            | Water exchange<br>manifests on<br>geological scale<br>time | 2400 - 3900 m              |

Fig. 8. Chebotarev's classification

#### Wei et al. (1996) classification

Wei et al (1996) classification shows trap and faulting conditions using water ions (Na/Ca-Na/Cl) (Table 5). The classification is based on Sulin's water types.

| Oil/gas reservoir class                    | ification                       | Non-                                           | Weakly destruct                                                                                 | ive (II)                                                                                    | Strongly destr                                                    | uctive (III)                                                                    |
|--------------------------------------------|---------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                            |                                 | destructive<br>(I)                             | Slightly weakly<br>destructive<br>(II <sub>1</sub> )                                            | Unevenly<br>destructive<br>(II <sub>2</sub> )                                               | Oil bed-<br>exposed type<br>(III <sub>1</sub> )                   | Tectonically<br>destructive type<br>(III <sub>2</sub> )                         |
| Hydrogeological                            | Na/Cl                           | < 0.85                                         | > 1.00                                                                                          | > 1.00                                                                                      | > 1.00                                                            | 0.85-1.00                                                                       |
| parameters of<br>oilfield                  | (SO <sub>4</sub> x 100) /<br>Cl | 0.02-2.00                                      | 0.00-2.25                                                                                       | 0.20-20.00                                                                                  | > 3.5                                                             | 0.00-3.50                                                                       |
|                                            | Na/Ca                           | 2.50-10.00                                     | 8-12                                                                                            | 10-50                                                                                       | 30-175                                                            | 15-55                                                                           |
|                                            | Water Type                      | CaCl <sub>2</sub>                              | NaHCO <sub>3</sub>                                                                              | NaHCO <sub>3</sub>                                                                          | NaHCO <sub>3</sub>                                                | CaCl <sub>2</sub><br>dominantly                                                 |
| Petroleum<br>geological<br>characteristics | Degree of trap<br>destruction   | Not<br>destroyed                               | Local faults<br>interlinked with<br>formation water<br>at shallow depth                         | Faults<br>relatively<br>developed,<br>locally<br>interlinked<br>with the<br>Earth's surface | Exposed-on-<br>the surface oil<br>beds<br>suffering<br>denudation | Strong tectonic<br>uplifting, faults<br>leading to the<br>surface               |
|                                            | Activity of<br>oilfield water   | Oilfield<br>water<br>tending to be<br>stagnant | NaHCO <sub>3</sub> -type<br>water present<br>locally, surface<br>water<br>permeating<br>locally | Surface water<br>permeating<br>through faults                                               | Leached by<br>rain water,<br>surface water<br>permeating          | Oilfield water<br>relatively<br>strongly active,<br>surface water<br>permeating |
|                                            | Other aspects                   | Complete<br>cover strata                       | Incompletely<br>closed cover<br>strata                                                          | Oil and gas<br>lost in small<br>amounts,<br>partly<br>migrating to<br>other location        | No cover<br>strata, oil and<br>gas lost in<br>large amounts       | Incomplete<br>cover strata, oil<br>and gas lost in<br>large amounts             |

| fable | 5.Wei | et al. | (1996) | classification | n |
|-------|-------|--------|--------|----------------|---|
|-------|-------|--------|--------|----------------|---|

#### Other Classifications and Approaches

Bojarski (1970) observed a large variation in the chemical composition in the chloride-calcium type of water and subdivided this type (Table 6). Bojarski considers a zone of this typeto be one of the most likely areas where hydrocarbons are accumulated. Additional characteristics of water associated with hydrocarbon accumulations are as follows: (1) iodine >1 mg/l; (2) bromide > 300 mg/l; (3) Cl/Br < 350; and (4) (SO<sub>4</sub> xl00)/Cl < 1 (Collins, 1975).

|             | =                 | <b>510 01 2</b> 0 juisiii 8 <b>0</b> i |                                                             |
|-------------|-------------------|----------------------------------------|-------------------------------------------------------------|
| Water class | Su type           | Na/Cl ratio (epm)                      | Properties                                                  |
|             |                   |                                        | zone of little prospect for the preservation of hydrocarbon |
| 1           | CaCl <sub>2</sub> | > 0.85                                 | deposits                                                    |
|             |                   |                                        | poor zone for hydrocarbon preservation                      |
| 2           | CaCl <sub>2</sub> | 0.85 - 0.75                            |                                                             |
|             |                   |                                        | fairly favorable environment for the preservation of        |
| 3           | CaCl <sub>2</sub> | 0.75 - 0.65                            | hydrocarbons                                                |
|             |                   |                                        | good zone for the preservation of hydrocarbons              |
| 4           | CaCl <sub>2</sub> | 0.65 - 0.50                            |                                                             |
|             |                   |                                        | Presence of ancient residual sea water                      |
| 5           | CaCl <sub>2</sub> | < 0.50                                 |                                                             |

| Table 6. | Bojarski | s classification | (Collins, | 1975) |
|----------|----------|------------------|-----------|-------|
|----------|----------|------------------|-----------|-------|

Schoeneich (1971) found that in Poland the waters associated with hydrocarbon bearing reservoirs show the following characteristics (Coustau, 1977) : I > 10 mg/l; C1/Br < 120; SO<sub>4</sub> < 0.7 g/l; SO<sub>4</sub>/HCO<sub>3</sub> < 2.

Vel'kov (1960) findings in Russia, subsurface waters of the Saratov area was established that  $SO_4/HCO_3$  was less than 3 in waters in contact with the oil or located near an oil pool. This ratio was greater than 3 in waters of non-productive horizons or far from an oil pool.

Roshental (1997), Ca-chloride waters, are defined as thosein which  $Q = Ca/(SO_4 + HCO_3)$ , Na/Cl < 0.80, Mg/Ca < 0.5 and Cl/Br  $\leq$  286

Buljan (1962 and 1963), every natural water, including contact waters (oilfield brines), can be characterized by two important properties, namely: 1. The balance of sulphate (B.S) which equals the loss of sulphate during the diagenesis of water. 2. The index of aeration (I.A) which indicates the degree of aeration of the water. The B.S and I.A are calculated from hydrochemical data of natural waters (formation waters, oilfield brines, sulphurous springs, ...etc.) that are associated with these deposits. For hydrocarbon deposits, B.S values were negative and ranged from few to several thousands, while I.A values were positive and ranged from zero to 10 for excellent prospects to 100 or to 1000 for less important prospects. For natural sulphur deposits, both the B.S and I.A values were positive and ranged from few hundreds to thousands. These two indices have numerical values which can be calculated for every water from the results of a routine chemical analysis (Jamil, 2004):

 $\begin{array}{l} B.S = (SO_4)_{sample} - (SO_4)_t \\ I.A = [(SO_4)_{sample} / (SO_4)_t] \ x \ 100 \\ (SO_4)_t = 0.1394 \ x \ (Cl)_{sample} \end{array}$ 

From these two equations it is evident that for sea water: B.S = zero and I.A = 100.

The authors of this article found that at least 1 mg/l lithium and at least 3 mg/l boron ions were in the waters associated with oil and gas production fields (unpublished data).

#### **Isotopic Classifications and Interpretations**

Wang et al. (2016) studied links of helium type to mantle species (using R/Ra ratio) (Fig. 9). Herndon (2011) examined the R/Ra ratios of some oil-and gasfields in rift valleys such as Deccan and Siberian traps in India to determine the origin of helium. According to Herndon, during the formation and continuation of rift basins, basaltic explosions occur. High <sup>3</sup>He/<sup>4</sup>He ratios indicate that source of the heat in the process causing this explosion is Earth's core (Herndon, 2011). Today, it is known that Siberian basin contains some of the world's largest oil, gas and coal reserves. Herndon (2016) examined the helium ratios of oil and gas, both of which are biogenic in the reservoirs, as well as the presence of abiotic methane and hydrocarbons leaking from the mantle in these traps. It also with scientific rationales explains that it is the reasons to doubt the relationship between decompression-driven rift basin formation and mantle methane availability.

Classification of Waples (1985) contains C13 isotope and compares it different intervals to determine carbon type like inorganic or organic carbon and detect organic matter type (Fig., 10 and 11). Reich et al. (2013) classified source of iodine according to <sup>129</sup>I/I ratio (Fig. 12). Clark (2015) describes derived rock types specified by strontium isotope (Fig. 13) and also using with Oxygen-18 and deuterium isotopes to detect brine type (basin or shield) (Fig. 14).



Fig. 9. Helium origin graphy (Wang et al., 2016)







Fig. 11. Organic matter origin according to Waples (1985) carbon isotope classification



Fig. 12. Source of iodine (Reich et al., 2013)



Fig. 13. Derived rock type (Clark, 2015)



Fig. 14. Brine type (basin or shield brine) detection of Clarke's isotope classification (Clark, 2015)

As a strongly biophilic element, iodine is commonly found heavily enriched in fluids associated with hydrocarbons, such as oil field brines (Moran et al., 1995) or coal-bed methane reservoirs (Snyder et al., 2003). Accordingly, the iodine isotope has been used recently for the determination of source formations of hydrocarbons in a variety of settings (e.g. Fehn et al., 1990; Birkle, 2006). Formation water age may be determine with follow formula (Fehn et al., 2007) or Fig.15 using <sup>129</sup>I/I isotope.

 $T = \ln (^{129}I/I_{measured}/^{129}I/I_{cosmogenic(marine)})/(-\Lambda_{129})$  T = Age (Ma)  $^{129}I/II_{cosmogenic(marine)} = 1500 \times 10^{-15}$   $\Lambda_{129} = decay \text{ constant} = 4.41 \text{ x } 10^{-8} \text{ year}$ Half-life of iodine,  $T_{1/2} = 17$  Ma



**Fig. 15.** Iodine dating: Systematics of the decrease of cosmogenic and build-up offissiogenic <sup>129</sup>I/I ratios. The cosmogenic (marine) <sup>129</sup>I/I ratio decays from the input ratio $R_i = 1500 \times 10^{-15}$ . Arrows indicate the determination of t<sub>min</sub> from the measured ratio  $R_m$  using the decay curve of cosmogenic <sup>129</sup>I/I (Fehn et al., 2007).

#### V. Comparison of HYDROPET Program Classifications with Data of Known Oil and Gas Fields

#### 5.1. Method and Data

HYDROPET was tested on more than 80,000 onshore and offshore oil and gas production fields and basins formation waters that are carefully selected from the published global literature regarding different geological environments during the preparation and development processes (Table 7). Within the scope of this article, in order to submit the oil and gas production fields / basins data of the classification methods in the program and the comparison results, 3 samples as Jujo-Tecominoacán oil field (Gulf of Mexico), West Qaidam basin (China) and Adiyaman oilfields (Southeast Anatolian basin, Turkey) for which both the geological structure and production data (depth and production amount of formation water etc.) and the results of both chemical and isotopic analysis results are issued, are selected.

The Jujo-Tecominoacán oil reservoir (Gulf of Mexico), based on geological-tectonic features, the oilfield is divided into the Tecominoacán production zone in the northern section and Jujo towards the south (Fig. 16). Major reservoir column is formed by meso- and microcrystalline dolomite, packstone and anhydrite, followed by mudstones and micro-crystalline dolomite. As the reservoirs strongly deformed by tectonic activities (Birkle et al., 2009a). Chemical and isotopic analysis results of waters from the Jujo and Tecominoacán fields at Table 8 is given.

The Western Qaidam Basin (China) is a large intermontane basin at the northeastern corner of the Tibetan plateau. Within the basin, a series of NWW trending anticlines were developed by deep fault controls and extrusions from the surrounding mountains (Fig. 17). The oilfield brines produced in Tertiary sedimentary strata and modern salt lake brines should be no relation to ancient sedimentary seawater based on the geological setting. Through recent geological research and surveys in western Qaidam Basin, rich and unique oilfield brine resources (formationwaters in the reservoirs of Paleocene-Oligocene strata) were found in many tectonically controlled units (anticlines) (Tan et al., 2011). Chemical and isotopic analysis results of waters from the western Qaidam Basin at Table 9 is given.

| Locations                                                   | References                                                                                                                     |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| USGS Produced Waters Geochemical                            | Blondes et al. (2016)                                                                                                          |
| Database, USA                                               |                                                                                                                                |
| California - Los Angeles, USA                               | Jensen (1934); Rachinsky and Kerimov (2015)                                                                                    |
| Gulf of Mexico, USA-Mexico                                  | Land and Macpherson (1992); Franks and Uchytil (2016); Birkle et al. (2009);<br>Birkle et al. (2002): Birkle and Angulo (2005) |
| Illions Basin USA                                           | Stueher et al. (1993): Stueher and Walter (1991): Demir and Seyler (1999)                                                      |
| Kansas, U.S.A                                               | Cihaudhuri et al. (1987)                                                                                                       |
| Southwestern Louisiana, USA                                 | Dickey et al. (1972)                                                                                                           |
| Central Mississippi, USA                                    | Carpenter et al. (1974); Kharaka et al. (1987)                                                                                 |
| New Mexico, USA                                             | Barnaby et al. (2004)                                                                                                          |
| Pennsylvania, USA                                           | Dresel and Rose (2010); Rowan et al. (2015)                                                                                    |
| Permian Basin, USA                                          | Engle et al. (2016)<br>Fisher and Kraitlar (1097): Maanharaan (1002)                                                           |
| Fastern Obio USA                                            | Breen and Masters (1987); Macpherson (1992)                                                                                    |
| Indiana, USA                                                | Risch and Silcox (2016)                                                                                                        |
| Paradox Basin Region, USA                                   | Hanshaw and Hill (1969)                                                                                                        |
| Viennese Basin, Austria                                     | Rachinsky and Kerimov (2015)                                                                                                   |
| South Caspian Basin, Azerbaijan                             | Rachinsky and Kerimov (2015); Mazzini et al. (2009); Planke et al. (2003);<br>Lavrushina et al. (2015); Chilingar (1958)       |
| Qaidam Basin, China                                         | Tan et al. (2011); Qishun et al. (2010);                                                                                       |
| Tarim Basin, Unina<br>Vinggehai Basin, China                | Liang et al. (2006)                                                                                                            |
| Cichara Dasin, China                                        | Stars of al. (2013)           Very st s1 (1007)                                                                                |
| Sichuan Basin, Unina<br>Dagang Gudao-Shengli Shengli Pangia | Aun et al. (1997)           Vang (2017)                                                                                        |
| fields.China                                                |                                                                                                                                |
| Mahakam Basin, Indonesia                                    | Bazin et al. (1997)                                                                                                            |
| Paris Basin, France                                         | Fontes (1993)                                                                                                                  |
| Krishna Godavari Basin, India                               | Murthy et al. (2011)                                                                                                           |
| North Sea                                                   | Bazin et al. (1997); Smalley et al. (1995)                                                                                     |
| East Midlands, United Kingdom                               | Downing and Howitt (1968)                                                                                                      |
|                                                             | (1983); Quadir (2008)<br>Decherand Weimer (2015): Dechericated (2014, he) Mixing Machadari                                     |
| Zagios Poledeep, Itali                                      | (2012): Mirnejad et al. (2011): Rafighdoust et al. (2015)                                                                      |
| Israel                                                      | Chan et al. (2002); Bentor (1969)                                                                                              |
| Padan Depression, Italy                                     | Rachinsky and Kerimov (2015)                                                                                                   |
| Japan                                                       | Sudo (1967)                                                                                                                    |
| East Java, Indonesia                                        | Purwaningsih and Notosiswoyo (2013)                                                                                            |
| Alberta, Canada<br>Canadian Shield                          | France et al. (1971)                                                                                                           |
| Southwestern Ontario Eastern Michigan                       | Weaver et al. $(1964)$                                                                                                         |
| Basin, Canada                                               |                                                                                                                                |
| Basin, Canada                                               | Bernatsky (1998); Toop and Toth (1995)                                                                                         |
| Norwegian shelf-offshore                                    | Recharge and Aggaard (1989): Riorlykke et al. (1995)                                                                           |
| Poland                                                      | Uliasz-Misiak (2016); Schoeller (1962)                                                                                         |
| Romania                                                     | Schoeller (1962)                                                                                                               |
| Indol-Kuban Foredeep, Russia                                | Rachinsky and Kerimov (2015)                                                                                                   |
| West Siberia, Russia                                        | Kurchikov and Plavnik (2009); Novikov and Shvartsev (2009); Novikov (2012);<br>Kokh and Novikov (2014); Novikov (2013b)        |
| Siberian Platform, Russia                                   | Shouakar-Stash et al. (2007)                                                                                                   |
| Terk-Caspian Foredeep, Russia                               | Kachinsky and Kerimov (2015)                                                                                                   |
| Southern Sudan                                              | Rueskamp (2013a)                                                                                                               |
| Saudi Arabia                                                | Birkle (2016a). Birkle (2016b): Birkle et al. (2013)                                                                           |
| Gulf of Suez                                                | Israr et al. (1971)                                                                                                            |
| Trinidad                                                    | Dia et al. (1999)                                                                                                              |
| Southern Tunisia                                            | Morad et al. (1994); Coustau (1977)                                                                                            |
| Southern Turkey                                             | Celik and Sari (2002); Hoshan et al. (2008); Çelik et al. (1998); Uğur and Orgün (1996)                                        |
| Thrace Basin, Turkey                                        | Ozgun et al. (2012); Cakmakcı et al (2008); Okandan et al. (1994)                                                              |
| Carpathian Foradaan, Ultrania                               | Uppo et al. (2014); Uppo and Capozzi (2015)<br>Pachineky and Karimov (2015)                                                    |
| Oman                                                        | Sakroon (2008)                                                                                                                 |
| Maracaibo Basin, Venezuela                                  | Boschetti et al. (2016); Rachinsky and Kerimov (2015)                                                                          |
| South Vietnam Shelf                                         | Kireeva (2010)                                                                                                                 |
| General reference                                           | Mazor (2004)                                                                                                                   |

| <b>Table 7.</b> Locations of oilfield water chemical analyses data that testing of HYDROPET p | orogram |
|-----------------------------------------------------------------------------------------------|---------|
|-----------------------------------------------------------------------------------------------|---------|

DOI: 10.9790/0990-06040262104

.



Fig. 16. Location of production wells and sample sites in the Jujo-Tecominoacán oil field (Birkle et al., 2009a)



Fig 17. Location of the western Qaidam basin and distribution of its main anticlines, oilfield bines and sample sites (Tan et al., 2011).

Adıyaman oilfields (Southern Turkey) is located on the marginal folded belt placed on the northern margin of the shelf-platform of the Arabian-African plate. Çelik and Sarı (2002) focusses on the chemical evolution of fresh and saline groundwaters in the calcareous rocks of the Adıyaman oilfields (Fig. 18). Purpose of this study is to classify waters by different methods and examine their origin. Meteoric effect was determined in the water produced from a well in the Karababa C Formation. In another study (Çelik et al., 1998), it was stated that the formation waters of Adıyaman region may have been trapped in old marine deposits and got mixed with meteoric groundwater. Chemical and isotopic analysis results of waters from the Adıyaman oilfields at Table 10 is given.

High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits ..



Fig. 18. Location map of water samples and Adıyaman oilfields (modified from Çelik and Sarı, 2002)

| 7 - /          |                               |            |              |              |              |             |              |               |                |             |              |              |             |            |           |                                    |
|----------------|-------------------------------|------------|--------------|--------------|--------------|-------------|--------------|---------------|----------------|-------------|--------------|--------------|-------------|------------|-----------|------------------------------------|
| Sample         | Interval depth (m)            | Water type | Na<br>(mg/l) | Ca<br>(mg/l) | Mg<br>(mg/l) | K<br>(mg/l) | Cl<br>(mg/l) | SO4<br>(mg/l) | HCO3<br>(mg/l) | I<br>(mg/l) | Br<br>(mg/l) | Li<br>(mg/l) | B<br>(mg/l) | 18<br>(%0) | D<br>(%0) | <sup>87</sup> Sr/ <sup>66</sup> Sr |
| J-3A           | 5675-5705                     | Ca-Na-Cl   | 62400        | 52200        | 2900         | 9580        | 218000       | <60.0         | 169            | 35.5        | 2970         | 158          | 155         | -1.4       | -14       | 0.70893                            |
| J-5            | 6040                          | Ca-Na-Cl   | 50300        | 45400        | 2130         | 7880        | 183000       | <60.0         | 399            | 27.5        | 2950         | 124          | 133         | 1.3        | -13       | 0.70908                            |
| J-13A          | 5655-5673                     | Ca-Na-Cl   | 61700        | 45200        | 2780         | 8690        | 195000       | <60.0         | 169            | 18.8        | 2760         | 124          | 143         | 4          | -13       | 0.70878                            |
| J-14D          | 5760-5783                     | Ca-Na-Cl   | 45700        | 47000        | 2570         | 8300        | 189000       | <60.0         | 217            | 22.2        | 2620         | 149          | 139         | 0.8        | -9        | 0.70926                            |
| J-26           | 5455-5490 5505-5530           | NaCl       | 2900         | 138          | 6.00         | 48          | 6180         | 136           | 193            | 4.18        | 32.3         | 1.00         | 105         | 9.3        | 1         | 0.70791                            |
| J-27           | 5237                          | Ca-Na-Cl   | 42700        | 39400        | 1980         | 6840        | 151000       | 150           | 332            | 17.9        | 1740         | 88.3         | 116         | 4.7        | -12       | 0.70898                            |
| J-54           | 5637-5675 5737-5780 5810-5890 | Ca-Na-Cl   | 52700        | 52600        | 2860         | 9420        | 195000       | <60.0         | 169            | 24.8        | 2620         | 175          | 157         | 4          | -13       | 0.70927                            |
| J-65           | 5575-5595                     | Ca-Na-Cl   | 16500        | 44200        | 3370         | 5460        | 154000       | <60.0         | 242            | 7.60        | 1940         | 74.2         | 172         | 7.1        | -8        | 0.70854                            |
| J-438          | 5935                          | Ca-Na-Cl   | 3760         | 1900         | 466          | 827         | 11300        | 357           | 1370           | 8.56        | 40.9         | 3.30         | 26.7        | 8.7        | -11       | 0.70868                            |
| T-119          | 5445-5475                     | Ca-Na-Cl   | 26300        | 35500        | 2910         | 5800        | 129000       | 138           | 201            | 13.0        | 1695         | 73.3         | 132         | 8.5        | -7        | 0.70879                            |
| T-120          | 5517-5526 5533-5542 5562-5573 | Ca-Na-Cl   | 35400        | 46200        | 3810         | 8040        | 166000       | 65.6          | 181            | 18.1        | 2240         | 117          | 174         | 5.5        | -13       | 0.70889                            |
| T-125          | 5900,60106090-6114            | Ca-Na-Cl   | 30500        | 43100        | 2780         | 6900        | 153000       | 88.9          | 290            | 14.3        | 2300         | 88.9         | 156         | 7.9        | -12       | 0.70896                            |
| T-127          | 5375-5390 5425-5435           | Ca-Na-Cl   | 38800        | 53000        | 3240         | 8940        | 181000       | <60.0         | 205            | 16.5        | 2760         | 126          | 187         | 5.8        | -11       | 0.70875                            |
| T-143A         | 6160                          | Na-Cl      | 6470         | 927          | 60.0         | 604         | 13400        | 689           | 785            | 8.70        | 109          | 4.20         | 80.1        | 10.2       | -10       | 0.70832                            |
| T-149          | 5600                          | Na-Cl      | 3330         | 462          | 19.0         | 91          | 6720         | 694           | 271            | 5.46        | 36.5         | 1.40         | 37.4        | 3.1        | -7        | 0.70825                            |
| T-448          | 5405-5435                     | Ca-Na-Cl   | 47100        | 50000        | 2970         | 8870        | 192000       | <60.0         | 157            | 21.9        | 3130         | 160          | 147         | 4.3        | -11       | 0.70923                            |
| T-468          | 5565-5580 5608-5628           | Ca-Na-Cl   | 22800        | 32000        | 2050         | 5190        | 116000       | 161           | 205            | 11.7        | 1650         | 67.4         | 127         | 10         | -11       | 0.70883                            |
| T-488          | 5860                          | Ca-Na-Cl   | 60600        | 55700        | 2420         | 10,200      | 248000       | <60.0         | 447            | 28.7        | 3670         | 205          | 139         | 4.3        | -13       | 0.70944                            |
| Arenal river   | •                             | Na-Ca-HCO; | 17.8         | 44.5         | 7.28         | 4.59        | 7.55         | 5.28          | 164            | 0.02        | 0.05         | 0.01         | 0.04        | -3.8       | -21       | 0.70738                            |
| Mecatepec well |                               | Na-HCO3-Ca | 11.4         | 23.9         | 1.92         | 4.87        | 5.24         | 0.49          | 67.6           | 0.01        | 0.05         | 0.02         | 0.05        | -4.6       | -25       | 0.70868                            |

**Table 8.** Chemical and isotopic analysis results of waters from the Jujo and Tecominoacán fields (Birkle et al.,<br/>2009a,b)

| Sample site | Sample type            | Na<br>(mg/l) | Ca<br>(mg/l) | Mg<br>(mg/l) | K<br>(mg/l) | Cl<br>(mg/l) | SO4<br>(mg/l) | HCO;<br>(mg/l) | Br<br>(mg/l) | Li<br>(mg/l) | B<br>(mg/l) | <sup>18</sup> O (%o) | D (%to) | <sup>∎™</sup> Sr/ <sup>™</sup> Sr | <sup>3</sup> He/ <sup>4</sup> He<br>(Ra) |
|-------------|------------------------|--------------|--------------|--------------|-------------|--------------|---------------|----------------|--------------|--------------|-------------|----------------------|---------|-----------------------------------|------------------------------------------|
| 1           | Oilfield brine         | 55780        | 1580         | 330          | 840         | 89010        | 2050          | 5              | 54.8         | 36           | 84.4        | 7.1                  | -50     | 0.711413                          |                                          |
| 2           | Oilfield brine         | 17290        | 117910       | 7780         | 43040       | 296960       | 30            | 5              | 537          | 1890         | 3978        | 15.89                | -27.8   | 0.711229                          | 0.747                                    |
| 3           | Oilfield brine         | 44590        | 69100        | 5050         | 35750       | 237860       | 160           | 290            | 281          | 983          | 3332.3      | 13.88                | -28.1   | 0.71121                           | 0.735                                    |
| 4           | Oilfield brine         | 32300        | 15530        | 1320         | 5350        | 85710        | 290           | 100            | 38.2         | 182.63       | 2699.83     | -1.35                | -34.7   | 0.711184                          |                                          |
| ,           | Oilfield brine         | 28420        | 7220         | 840          | 2230        | 60620        | 430           | 230            | 43.68        | 81.2         | 2396.79     | -2.47                | -30.9   | 0.711103                          |                                          |
| ,           | Oilfield brine         | 94410        | 13580        | 2060         | 780         | 176150       | 190           | 5              | 80.9         | 91.6         | 182.3       | 7.19                 | -38.4   | 0.711021                          |                                          |
| ,           | Oilfield brine         | 96670        | 13510        | 2130         | 600         | 179590       | 150           | 5              | 79.1         | 89.9         | 227.7       | 0.52                 | -10     | 0.711666                          |                                          |
| 0           | Oilfield brine         | 59650        | 2620         | 1610         | 240         | 98740        | 3590          | 220            | 102.1        | 33.8         | 133.7       | 0.47                 | -30.1   | 0.711037                          |                                          |
| 10          | Oilfield brine         | 68050        | 6510         | 1300         | 300         | 120040       | 570           | 70             | 98           | 2.1          | 250.6       | 0.62                 | -44.6   | 0.711819                          |                                          |
|             | Oilfield brine         | 27620        | 1550         | 450          | 410         | 46380        | 550           | 380            | 30.9         | 6.2          | 218.6       | 6.2                  | -47     | 0.711699                          |                                          |
| 12          | Salt lake brine        | 115680       | 4450         | 1790         | 1840        | 191790       | 1560          | 310            | 79.3         | 13           | 394.4       | 1.98                 | -11.3   | 0.711745                          |                                          |
| 13          | Salt lake brine        | 56650        | 80           | 46650        | 6840        | 177730       | 69250         | 1500           | 53.3         | 45.3         | 185.4       | 13.99                | 9.1     | 0.712295                          |                                          |
| 14          | Salt lake brine        | 111080       | 550          | 7970         | 3760        | 187310       | 15100         | 750            | 21.3         | 24.5         | 205         | 14.21                | 6.2     | 0.712396                          |                                          |
| 15          | Intercrystalline brine | 111110       | 610          | 7830         | 3790        | 187150       | 15020         | 720            | 20.1         | 23.9         | 206.5       | 10.86                | -30.9   | 0.711566                          |                                          |
| 16          | Intercrystalline brine | 108360       | 410          | 13910        | 12360       | 175020       | 60200         | 180            | 103          | 6            | 63          | 8.62                 | -42.6   | 0.71178                           |                                          |
| 17          | Springwater            | 40           | 32           | 9            | 2           | 40           | 52            | 121            |              |              |             | -6.07                | -53.5   |                                   |                                          |
| 18          | Groundwater            | 100          | 25           | 12           | 19          | 120          | 91            | 115            |              | 0.016        |             | -8.46                | -46.6   |                                   |                                          |
| 19          | Groundwater            | 340          | 77           | 36           | 24          | 422          | 399           | 130            |              | 0.054        |             | -7.2                 | -44.4   |                                   |                                          |
| 20          | Groundwater            | 140          | 41           | 39           | 4           | 114          | 118           | 362            |              | 0.034        |             | -8                   | -58     |                                   |                                          |
| 21          | Groundwater            | 140          | 37           | 43           | 4           | 119          | 129           | 350            |              | 0.031        |             | -7.9                 | -40.8   |                                   |                                          |
|             | Groundwater            | 220          | 35           | 12           | 5           | 124          | 167           | 343            |              | 0.033        |             | -1.78                | 0.92    |                                   |                                          |

**Table 9.** Chemical and isotopic analysis results of waters in the western Qaidam Basin (Tan et al., 2011)

|               | Well         | Coord      | linates    |                 |              |              |              |             |              |               |                |             |              |              |             |              |        |
|---------------|--------------|------------|------------|-----------------|--------------|--------------|--------------|-------------|--------------|---------------|----------------|-------------|--------------|--------------|-------------|--------------|--------|
| Sample        | depth<br>(m) | Latitude   | Longitude  | Sample type     | Na<br>(mg/l) | Ca<br>(mg/l) | Mg<br>(mg/l) | K<br>(mg/l) | Cl<br>(mg/l) | SO4<br>(mg/l) | HCO;<br>(mg/l) | I<br>(mg/l) | Br<br>(mg/l) | Li<br>(mg/l) | B<br>(mg/l) | 18O<br>(%00) | D (%o) |
| ADL           | 0            | 37.726759° | 38.852188° | Fresh water     | 17           | 38.4         | 13.6         | 2.5         | 19           | 20.7          | 122            |             |              |              |             |              |        |
| KS            | -            | 37.864999° | 38.430443° | Fresh water     | 0.9          | 70.4         | 9.48         | 0.3         | 6            | 5             | 166            |             |              |              |             |              |        |
| FG            | -            | 37.782149° | 38.258539° | Fresh water     | 2.9          | 44           | 10.02        | 0.2         | 11           | <0.2          | 128            |             |              |              |             |              |        |
| Adıyaman 7    | 1064         | 37.790552° | 38.225824° | Formation water | 4505         | 613.5        | 122.4        | 70.4        | 8250         | 100           | 342.8          |             |              |              |             |              |        |
| A 32          | 1636         | 37.795476° | 38.224795° | Formation water | 1000         | 620          | 104.5        | 70          | 8000         | 183.4         | 271            |             | 38.8         |              |             | -9.41        | -61.7  |
| A 44          | 1582         | 37.791387° | 38.210278° | Formation water | 298          | 72           | 19.4         | 10.3        | 480          | 17.1          | 244            | 0.75        |              | <0.1         | 0.56        | -7.8         | -62.68 |
| Adıyaman 52   | 1668         | 37.793034° | 38.219426° | Formation water | 6257.5       | 930.8        | 180.8        | 76.9        | 11835        | 300           | 249.9          |             |              |              |             |              |        |
| Bati Firat 2  | 1522         | 37.871381° | 38.929165° | Formation water | 8762.5       | 992.9        | 156.4        | 415.5       | 15234        | 800           | 714.2          |             |              |              |             |              |        |
| Batı Fırat 11 | 958          | 37.869999° | 38.924436° | Formation water | 7482.5       | 830.2        | 131.2        | 363.5       | 12690        | 850           | 856.9          |             |              |              |             |              |        |
| Batı Fırat 12 | 949          | 37.867775° | 38.927497° | Formation water | 7135         | 946.2        | 139.2        | 378         | 12348        | 850           | 999.8          |             |              |              |             |              |        |
| Batı Fırat 13 | 1856         | 37.864160° | 38.926386° | Formation water | 12022.5      | 1130         | 181.2        | 353.5       | 20915        | 950           | 642.7          |             |              |              |             |              |        |
| Beşikli l     | 1625         | 37.757494° | 38.861941° | Formation water | 12240        | 1844         | 362.6        | 399         | 23189        | 800           | 342.8          |             |              |              |             |              |        |
| Beşikli 7/A   | 1795         | 37.751386° | 38.849443° | Formation water | 7202.5       | 1199         | 230.1        | 261.2       | 13500        | 700           | 285.6          |             |              |              |             |              |        |
| Be 10         | 1944         | 37.756941° | 38.851941° | Formation water | 5875         | 968          | 140.9        | 215         | 9713         | 1061          | 188            | 2.48        |              | 2.3          | 19.71       | -7.53        | -61.21 |
| Beşikli 19    | 1684         | 37.755550° | 38.872491° | Formation water | 10810        | 1700         | 346.6        | 501         | 21000        | 800           | 357            |             |              |              |             |              |        |
| Ç 14          | 3225         | 37.816662° | 38.347777° | Formation water | 2925         | 552          | 48.6         | 150         | 6000         | 488           | 293            |             | 25.2         |              |             | -8.24        | -73.05 |
| Ç 44          | 3055         | 37.813610° | 38.351655° | Formation water | 2500         | 520          | 63.2         | 100         | 5024         | 655           | 655            | 120         | 19.6         | 12           | 1.97        | -8.49        | -42.80 |
| G.Karakuş 11  | 1734         | 37.819442° | 38.601101° | Formation water | 7717.5       | 944.9        | 147.1        | 235.7       | 13692        | 850           | 385.6          | 3.66        | 54.8         | 34.02        | 5.1         | -5.99        | -44.23 |
| SK 19         | 2445         | 37.824992° | 38.628047° | Formation water | 5960         | 840          | 85.1         | 285         | 11500        | 708           | 359            |             | 65.3         |              |             | -6.39        | -49.59 |
| Karakuş 5     | 2359         | 37.845828° | 38.591935° | Formation water | 7185         | 880.1        | 128.8        | 250.2       | 12463        | 700           | 314.2          |             |              |              |             |              |        |
| K 14          | 2610         | 37.856386° | 38.593047° | Formation water | 6375         | 700          | 48.6         | 270         | 10527        | 744           | 202            | 7.10        |              | 6.8          | 39.40       | -7.51        | -76.94 |
| Karakuş 21    | 1621         | 37.849998° | 38.588331° | Formation water | 7565         | 892.7        | 119.9        | 247         | 13279        | 700           | 428.5          |             |              |              |             |              |        |
| NK 20         | 2577         | 37.876665° | 38.619714° | Formation water | 7900         | 1120         | 60.8         | 360         | 15500        | 733           | 276            |             | 77.5         |              |             | -4.64        | -42.74 |
| NK 21         | 2596         | 37.876665° | 38.619714° | Formation water | 7600         | 1160         | 133.7        | 335         | 14500        | 706           | 493            |             | 77.3         |              |             | -4.66        | -48.54 |
| Ik 9          | 2254         | 37.786383° | 38.841388° | Formation water | 5188         | 740          | 133.7        | 288         | 8422         | 982           | 370            | 1.20        |              | 5.5          | 21.69       |              |        |

Table 10. Chemical and isotopic analysis results of waters in the Adıyaman oilfields (Data: Celik and, 2002; Hoşhan et al., 2008; Gümüş and Altan, 1995; G.D.P.A)

# 5.2. Discussion

Water type and origin

In order to assess type and origin of the water samples, Sulin (1946), Chebotarev (1955), Wei et al. (1996) and Rosental (1997) classifications are selected. Selected oilfield water observed as chlorite type water according to the software classifications. Other water types are Na<sub>2</sub>SO<sub>4</sub>, NaHCO<sub>3</sub> and MgCl<sub>2</sub> type waters according to the Sulin classification. As an example, examined results of fields are compatible with the results of the classifications included in the program. However, the definitions used for the same type of water are different from each other in the 4 classes selected for the identification of the type and origin of the water samples. Usage of hydrochemical facies for the identification of the water type of the samples studied in petroleum hydrogeology studies and the identifications of Sulin (1946) classification within definition of water origin that is determined by Na/Cl (%meq) ratio and recommended by Roger (1917) (connate or meteoric-origin water) eliminates this difference (Tables 11, 12 and 13).

| Sample                                                                                        | Sample type        | Water type              | Sulin<br>(1946)    | Chebotarev<br>(1955) | Wei et al.<br>(1996)            | Rosental<br>(1997)          | Water origin                        |
|-----------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------------|----------------------|---------------------------------|-----------------------------|-------------------------------------|
| J-3A, J-13A                                                                                   | Reservoir          | Na-Ca-Cl                | CaCl <sub>2</sub>  | Chloride             | CaCl <sub>2</sub>               | Ca-Chloride                 | Connate water                       |
| J-5, J-14D, J-27, J-54,<br>J-65, J-438, T-119,<br>T-120, T-125, T-127,<br>T-448, T-468, T-488 | Reservoir<br>water | Ca-Na-Cl                | CaCl <sub>2</sub>  | Chloride             | CaCl <sub>2</sub>               | $\frac{(Q > 1)}{(Q > 1)}$   | Connate water<br>(Sulin Na/Cl < 1)  |
| J-26                                                                                          | Reservoir<br>water | Na-Cl                   | CaCl <sub>2</sub>  | Chloride             | CaCl <sub>2</sub><br>dominantly | Ca-Chloride $(Q > 1)$       | Connate water<br>(Sulin Na/Cl < 1)  |
| T-143A, T-149                                                                                 | Reservoir<br>water | Na-Cl                   | CaCl <sub>2</sub>  | Chloride             | CaCl <sub>2</sub><br>dominantly | Ca-Chloride $(Q > 1)$       | Connate water<br>(Sulin Na/Cl < 1)  |
| Arenal river                                                                                  | Surface water      | Na-Ca-HCO <sub>3</sub>  | NaHCO <sub>3</sub> | Bicarbonate          | n/a                             | Ca-Chloride<br>(Mg/Ca <0.5) | Meteoric water<br>(Sulin Na/Cl > 1) |
| Mecatepec well                                                                                | Groundwater        | Na-HCO <sub>3</sub> -Ca | NaHCO <sub>3</sub> | Bicarbonate          | n/a                             | Ca-Chloride<br>(Q > 1)      | Meteoric water<br>(Sulin Na/Cl > 1) |

**Table 11.** Types and origins of waters in Jujo ve Tecominoacán oilfield (Gulf of Mexico)

| Sampla       | Sample type      | Water type                                 | Sulin              | Chabataray         | Woj ot al         | Recentel              | Water origin                                           |
|--------------|------------------|--------------------------------------------|--------------------|--------------------|-------------------|-----------------------|--------------------------------------------------------|
| Sample       | Sample type      | water type                                 | (1046)             | (1055)             | (1006)            | (1007)                | water origin                                           |
| 8 0 10       | Oilfield brine   | Na Cl                                      | (1)40)             | (1955)<br>Chlorida | (1990)            | (1997)<br>Ca Chlorida | Connata water                                          |
| 1, 0, 9, 10, | Official office  | Na-Ci                                      | CaC1 <sub>2</sub>  | Chloride           | dominantly        | (0 > 1)               | (Sulin No/Cl $< 1$ )                                   |
| 2            | Oilfield bring   | C <sub>2</sub> Cl                          | C <sub>2</sub> C1  | Chlorida           | CoCl              | (Q > I)               | (Sum Na/Cl < 1)                                        |
| 2            | Official office  | Ca-Ci                                      | CaCl <sub>2</sub>  | Chionde            | CaCI <sub>2</sub> | (0 > 1)               | Collinate water $(Sulin No/Cl < 1)$                    |
| 2            | Olfield heime    | C- N- Cl                                   | C-C1               | Chland             | C-C1              | (Q > I)               | (Sum Na/Cl < 1)                                        |
| 3            | Official brine   | Ca-INa-CI                                  | CaCl <sub>2</sub>  | Chloride           | CaCl <sub>2</sub> | Ca-Chioride           | Connate water $(S_{rel})$ N <sub>2</sub> $(C_{l} < 1)$ |
| 4.5          | 016 111 1        | N. G. GI                                   | 0.01               | G11 11             | G. 61             | (Q > I)               | (Sum Na/Cl < 1)                                        |
| 4, 5         | Oilfield brine   | Na-Ca-Cl                                   | CaCl <sub>2</sub>  | Chloride           | CaCl <sub>2</sub> | Ca-Chloride           | Connate water                                          |
|              |                  |                                            |                    |                    |                   | (Q > 1)               | (Sulin Na/Cl < 1)                                      |
| 6, 7         | Oilfield brine   | Na-Cl                                      | CaCl <sub>2</sub>  | Chloride           | CaCl <sub>2</sub> | Ca-Chloride           | Connate water                                          |
|              |                  |                                            |                    |                    |                   | (Q > 1)               | (Sulin Na/Cl < 1)                                      |
| 12           | Salt lake        | Mg-Na-Cl-SO <sub>4</sub>                   | MgCl <sub>2</sub>  | n/a                | CaCl <sub>2</sub> | Ca-Chloride           | Connate water                                          |
|              | brine            |                                            |                    |                    |                   | (Na/Cl <0.80)         | (Sulin Na/Cl < 1)                                      |
| 13, 14       | Salt lake        | Na-Cl                                      | MgCl <sub>2</sub>  | Chloride           | CaCl <sub>2</sub> |                       | Connate water                                          |
|              | brine            |                                            |                    |                    | dominantly        | n/a                   | (Sulin Na/Cl < 1)                                      |
| 15           | Intercrystalline | Na-Cl                                      | CaCl <sub>2</sub>  | Chloride           | CaCl <sub>2</sub> | Ca-Chloride           | Connate water                                          |
|              | brine            |                                            |                    |                    | dominantly        | (Q > 1)               | (Sulin Na/Cl < 1)                                      |
| 16           | Intercrystalline | Na-Cl-SO <sub>4</sub>                      | MgCl <sub>2</sub>  | n/a                | n/a               | n/a                   | Connate water                                          |
|              | brine            |                                            | -                  |                    |                   |                       | (Sulin Na/Cl < 1)                                      |
| 17           | Spring water     |                                            | NaSO <sub>4</sub>  | Chloride-          | n/a               | Ca-Chloride           | Meteoric water                                         |
|              | 1 0              | Na-Ca-HCO <sub>3</sub> -Cl-SO <sub>4</sub> |                    | Bicarbonate        |                   | (Mg/Ca < 0.5)         | (Sulin Na/Cl > 1)                                      |
| 18           | Groundwater      | Na-Cl-SO <sub>4</sub> -HCO <sub>3</sub>    | MgCl <sub>2</sub>  | n/a                | n/a               | n/a                   | Connate water                                          |
|              |                  |                                            | 0 2                |                    |                   |                       | (Sulin Na/Cl < 1)                                      |
| 19           | Groundwater      | Na-Cl-SO4                                  | MgCl <sub>2</sub>  | n/a                | n/a               | n/a                   | Connate water                                          |
|              |                  |                                            |                    |                    |                   |                       | (Sulin Na/Cl $< 1$ )                                   |
| 20.21        | Groundwater      | Na-Mg-HCO <sub>2</sub> -Cl-SO <sub>4</sub> | NaHCO <sub>2</sub> | Chloride-          | n/a               | n/a                   | Meteoric water                                         |
| 20, 21       | Groundstater     | 1                                          | 1                  | Bicarbonate        |                   |                       | (Sulin Na/Cl > 1)                                      |
| 22           | Groundwater      | Na-HCO2-Cl-SO4                             | NaHCO <sub>2</sub> | Chloride-          | n/a               | n/a                   | Meteoric water                                         |
|              | Groundwater      | 1,4 11003 01 004                           | i uneos            | Bicarbonate        | 10 0              | in a                  | (Sulin Na/Cl $> 1$ )                                   |

Table 12. Types and origins of waters in western Qaidam basin (China)

**Table 13.** Types and origins of waters in Adıyaman oilfields (Turkey)

| Sample                                                                     | Sample type        | Water type                | Sulin<br>(1946)   | Chebotarev<br>(1955)     | Wei et al.<br>(1996)            | Rosental<br>(1997)          | Water origin                        |
|----------------------------------------------------------------------------|--------------------|---------------------------|-------------------|--------------------------|---------------------------------|-----------------------------|-------------------------------------|
| ADL                                                                        | Fresh water        | Ca-Mg-Na-HCO <sub>3</sub> | $Na_2SO_4$        | Bicarbonate-<br>Chloride | n/a                             | n/a                         | Meteoric water<br>(Sulin Na/Cl > 1) |
| KS                                                                         | Fresh water        | Ca-Mg-HCO <sub>3</sub>    | MgCl <sub>2</sub> | Bicarbonate              | CaCl <sub>2</sub>               | Ca-Chloride $(Q > 1)$       | Connate water<br>(Sulin Na/Cl < 1)  |
| FG                                                                         | Fresh water        | Ca-Mg-HCO <sub>3</sub>    | MgCl <sub>2</sub> | Bicarbonate              | CaCl <sub>2</sub>               | Ca-Chloride $(Q > 1)$       | Connate water<br>(Sulin Na/Cl < 1)  |
| Adıyaman 7, Batı Fırat 2,                                                  | Formation          |                           | a a               | C11 11                   | CaCl <sub>2</sub>               | Ca-Chloride                 | Connate water                       |
| Bati Firat 11,<br>Bati Firat 12, Bati Firat 13                             | water              | Na-CI                     | CaCl <sub>2</sub> | Chloride                 | dominantly                      | (Q > 1)                     | (Sulin Na/Cl $< 1$ )                |
| A 32, Adıyaman 52,<br>Beşikli 1, Beşikli 7/A,<br>Beşikli 19, Batı Fırat 13 | Formation<br>water |                           | CaCl <sub>2</sub> | Chloride                 | CaCl <sub>2</sub>               | Ca-Chloride<br>(Q > 1)      | Connate water<br>(Sulin Na/Cl < 1)  |
| Be 10, Ç 14, Ç 44,                                                         |                    |                           |                   |                          |                                 |                             |                                     |
| G.Karakuş 11, SK 19,                                                       |                    | Na-CI                     |                   |                          |                                 |                             |                                     |
| Karakuş 5, K 14, Karakuş 21, NK 20, NK 21, Ik 9                            |                    |                           |                   |                          |                                 |                             |                                     |
| A 44                                                                       | Formation<br>water | NaCI-HCO <sub>3</sub>     | MgCl <sub>2</sub> | n/a                      | CaCl <sub>2</sub><br>dominantly | Ca-Chloride<br>(Mg/Ca <0.5) | Connate water<br>(Sulin Na/Cl < 1)  |

Chebotarev (1955) and Clark (2015) classifications are chosen for the assessment of the geological environment where the water samples are derived. Jujo and Tecominoacán reservoir water classified as "Derived from weathering of marine sediments" according to Chebotarev classification and as "Derived from carbonate weathering" according to the Clark classification. The major reservoir column is formed by meso- and microcrystalline dolomite, packstone and anhydrite, followed by mudstones and micro-crystalline dolomite (Birkle et al, 2009a). Thus, the classification of the geological environment where the water is derived for Jujo and Tecominoacán reservoir waters is compatible with the data known (Table 14).

West Qaidam basin water classified as "Derived from weathering of marine sediments" according to Chebotarev classification and as "Derived from granitic weathering" according to the Clark classification. Also, according to the Wang et al. (2016) classification, helium in the water is classified as "Main crustal derived (98.8% > crustal proportion > 88%)". The formation of West Qaidam basin waters as a mixture of different fluids (predominantly magmatic fluids and formation waters) (Tan et al., 2011) describes the different results in the Chebotarev and Clark classifications (Table 15). In case such different results are observed in Cheboratev and

Clark classifications, as detailed in Lawrence and Cornfordt (1995), the consequence that fluids are derived from different sources in the sedimentary basin mix with each other and the oilfield water is a mixture of these fluids, is obtained.

Adıyaman oilfield waters is classified as "Derived from weathering of marine sediments" according to the Chebotarev classification. In Adıyaman oil fields, reservoir rocks and other rocks are composed of limestone, dolomites and other marine sediments (Çelik and Sarı, 2002). Thus, the classification of the geological environment that is performed for the water where the water is derived is compatible with the data known (Table 16).

| Sample                                                                                            | Sample type        | Water type              | Chebotarev<br>(1955) |                                                      | Clark<br>(2015)                   |
|---------------------------------------------------------------------------------------------------|--------------------|-------------------------|----------------------|------------------------------------------------------|-----------------------------------|
| J-3A, J-13A                                                                                       | Reservoir<br>water | Na-Ca-Cl                | Chloride             | Derived from weathering of marine sediments          | Derived from carbonate weathering |
| J-5, J-14D, J-27,<br>J-54, J-65, J-438, T-<br>119, T-120,<br>T-125, T-127,<br>T-448, T-468, T-488 | Reservoir<br>water | Ca-Na-Cl                | Chloride             | Derived from weathering of marine sediments          | Derived from carbonate weathering |
| J-26, T-143A, T-149                                                                               | Reservoir<br>water | NaCl                    | Chloride             | Derived from weathering of marine sediments          | Derived from carbonate weathering |
| Arenal river                                                                                      | Surface<br>water   | Na-Ca-HCO <sub>3</sub>  | Bicarbonate          | Derived from weathering of Igneous/metamorphic rocks | Derived from carbonate weathering |
| Mecatepec well                                                                                    | Groundwater        | Na-HCO <sub>3</sub> -Ca | Bicarbonate          | Derived from weathering of Igneous/metamorphic rocks | Derived from carbonate weathering |

**Table 14.** Derived rock types of waters in Jujo ve Tecominoacán oilfield (Gulf of Mexico)

| Sample                   | Sample type               | Water type                                     | Chebotarev<br>(1955)     |                                                     | Clark<br>(2015)                     | Sample                                                           |
|--------------------------|---------------------------|------------------------------------------------|--------------------------|-----------------------------------------------------|-------------------------------------|------------------------------------------------------------------|
| 1, 6, 7, 8,<br>9, 10, 11 | Oilfield brine            | Na-Cl                                          | Chloride                 | Derived from weathering of marine sediments         | Derived from granitic weathering    |                                                                  |
| 2                        | Oilfield brine            | Ca-Cl                                          | Chloride                 | Derived from weathering of marine sediments         | Derived from<br>granitic weathering | Main crustal<br>derived (98.8% ><br>crustal proportion<br>> 88%) |
| 3                        | Oilfield brine            | Ca-Na-Cl                                       | Chloride                 | Derived from weathering of marine sediments         | Derived from<br>granitic weathering | Main crustal<br>derived (98.8% ><br>crustal proportion<br>> 88%) |
| 4                        | Oilfield brine            | Na-Ca-Cl                                       | Chloride                 | Derived from weathering of marine sediments         | Derived from granitic weathering    |                                                                  |
| 5                        | Oilfield brine            | Na-Ca-Cl                                       | Chloride                 | Derived from weathering of marine sediments         | Derived from granitic weathering    |                                                                  |
| 12                       | Salt lake<br>brine        | Mg-Na-Cl-SO <sub>4</sub>                       | n/a                      | n/a                                                 | Derived from granitic weathering    |                                                                  |
| 13, 14                   | Salt lake<br>brine        | Na-Cl                                          | Chloride                 | Derived from weathering of marine sediments         | Derived from granitic weathering    |                                                                  |
| 15                       | Intercrystalline<br>brine | Na-Cl                                          | Chloride                 | Derived from weathering of marine sediments         | Derived from granitic weathering    |                                                                  |
| 16                       | Intercrystalline<br>brine | Na-Cl-SO <sub>4</sub>                          | n/a                      | n/a                                                 | Derived from granitic weathering    |                                                                  |
| 17                       | Spring water              | Na-Ca-HCO <sub>3</sub> -Cl-<br>SO <sub>4</sub> | Chloride-<br>Bicarbonate | Derived from weathering of calcareous accumulations |                                     |                                                                  |
| 18                       | Groundwater               | Na-Cl-SO <sub>4</sub> -HCO <sub>3</sub>        | n/a                      | n/a                                                 |                                     |                                                                  |
| 19                       | Groundwater               | Na-Cl-SO <sub>4</sub>                          | n/a                      | n/a                                                 |                                     |                                                                  |
| 20, 21                   | Groundwater               | Na-Mg-HCO <sub>3</sub> -<br>Cl-SO <sub>4</sub> | Chloride-<br>Bicarbonate | Derived from weathering of calcareous accumulations |                                     |                                                                  |
| 22                       | Groundwater               | Na-HCO <sub>3</sub> -Cl-SO <sub>4</sub>        | Chloride-<br>Bicarbonate | Derived from weathering of calcareous accumulations |                                     |                                                                  |

 Table 15. Derived rock types of waters in western Qaidam basin (China)

|                     |                    |                           |                          | •                                                                  |
|---------------------|--------------------|---------------------------|--------------------------|--------------------------------------------------------------------|
| Sample              | Sample type        | Water type                | Chebotarev<br>(1955)     |                                                                    |
| ADL                 | Fresh water        | Ca-Mg-Na-HCO <sub>3</sub> | Bicarbonate-<br>Chloride | Igneous/metamorphic derived silicates and calcareous accumulations |
| KS                  | Fresh water        | Ca-Mg-HCO <sub>3</sub>    | Bicarbonate              | Igneous/metamorphic derived silicates and calcareous accumulations |
| FG                  | Fresh water        | Ca-Mg-HCO <sub>3</sub>    | Bicarbonate              | Igneous/metamorphic derived silicates and calcareous accumulations |
| A 44                | Formation<br>water | Na-CI-HCO <sub>3</sub>    | n/a                      | n/a                                                                |
| Other water samples | Formation water    | Na-CI                     | Chloride                 | Marine sediments                                                   |

 Table 16. Derived rock types of waters in Adıyaman oilfields (Turkey)

#### Association with Oil and Gas Deposits

In order to assess the association of the water samples and an oil and gas deposit; the classifications taking the Sulin (1946), Schoeller (1955), Bojarski (1970), Vel'kov (1960), Schoneich (1971), Buljan (1962, 1963), Li and B ratios as a basis are selected. The field samples selected are classified as "Water associated with hydrocarbon accumulations" according to the software classifications. Results of the classifications specified in the program, the results of the fields examined as a sample are compatible.

Iodine analysis result is present for all the Jujo and Tecominoacán reservoir water and a part of Adıyaman oilfield waters. In case the iodine analysis results of the investigated basin water samples are available, the Bojarski (1970) classification should be the preferred method since it specifies the waters associated with hydrocarbon accumulations that are directly based on iodine content. The results of the studies examined as an example verify this opinion (Table 17, all the Jujo and Tecominoacán reservoir waters and Table 19, Be 10, Ç14, Ç44, K14, Ik 9 samples having the results of Adıyaman oilfields iodine analysis). In case of iodine analysis results of the investigated basin water samples are not present, the Br/Cl <350 approach proposed by Borjarski (1970) becomes prominent. In all Jujo and Tecominoacán field reservoir samples and A32, Ç14, Ç44, G.Karakuş 11, SK 19, NK 20 and NK 21 samples having Br data of Adıyaman oilfields; Br/Cl is < 350 (Tables 17 and 19).

West Qaidam basin, there is no iodine data for the basin water and Br/Cl is > 350 (Table 9). However, there are connate-origin waters (Sulin Na/Cl<1) in the basin (Table 12). Therefore necessary to question that whether these connate-origin waters are associated to oil and gas deposits or not. The West Qaidam basin oilfield waters consist of a mixture of different fluids (mainly magmatic fluids and formation waters) (Tan et al., 2011) and the boron ratio is very high (Table 9). It seems appropriate to use the Li  $\geq$  1 and B  $\geq$  3 approaches proposed by the authors in order to determine the waters associated with oil and gas deposits in such basins where the connate waters and the magmatic contribution to the B ratio in the formation waters (due to magmatic contribution) are high. (All the West Qaidam basin oilfield waters, All Jujo and Tecominoacán reservoir waters, Be10, Ç44, G.Karakuş 11, K14 and Ik 9 samples of Adıyaman oilfields having Li and B analysis results) and the equation (SO<sub>4</sub> x 100)/Cl < 1 that is recommended by Bojarski (1970) (Most of the West Qaidam basin oilfield brines, all the Jujo and Tecominoacán reservoir waters excluding 4 samples) (Tables 17, 18 and 19).

It is observed that Buljan (1962, 1963) classification is found to be very compatible with the data on all the fields sampled (Tables 17, 18 and 19). Jamil (2004) has tested this classification on oilfield waters in Iraq and has achieved similar results with this study regarding the applicability of classification.

Table 17. Relation to oil and gas deposit of waters in Jujo ve Tecominoacán oilfield (Gulf of Mexico)

| High Accuracy | Estimation with | Computer-A | ided Hydrochem | ical Methods of Oi | l and Gas Deposits |
|---------------|-----------------|------------|----------------|--------------------|--------------------|
| тап лесинису  | LSIIManon wiin  | Сотригет-А | lueu Hyurochem | icai memous oj Oi  | i unu Ous Deposits |

| Sample                                                                                             | Water origin                        | Sulin<br>(1946)                                                    | Schoeller<br>(1955)                                 | Bojarski<br>(1970)                                                    | Vel'kov<br>(1960)                                                                                             | Schoeneich<br>(1971)                                                                                 | Buljan<br>(1962, 1963)                                       | $Li \ge 1$ and $B \ge 3$                             |
|----------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| J-3A, J-5, J-13A,<br>J-14D, J-27,<br>J-54, J-65,<br>T-119, T-120,<br>T-125, T-127,<br>T-448, T-468 | Connate water<br>(Sulin Na/Cl < 1)  | A sign<br>offine oil<br>and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water associated<br>with petroleum<br>(IBE > 0.129) | Water associated<br>with hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(Cl/Br < 120)                           | Excellent<br>prospect<br>(BS: negative,<br>IA: < 10)         | Water associated<br>with hydrocarbon<br>accumulation |
| J-26                                                                                               | Connate water<br>(Sulin Na/Cl < 1)  | A sign<br>offine oil<br>and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water associated<br>with petroleum<br>(IBE > 0.129) | Water associated<br>with hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in contact<br>with the oil or<br>located near<br>an oil pool<br>(SO4/HCO3< 3)                           | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 2) | Good<br>prospect<br>(BS: negative,<br>IA: 10-100)            | Water associated<br>with hydrocarbon<br>accumulation |
| J-438,<br>T-143A,<br>T-149                                                                         | Connate water<br>(Sulin Na/Cl < 1)  | A sign<br>offine oil<br>and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water associated<br>with petroleum<br>(IBE > 0.129) | Water associated<br>with hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 2) | Good<br>prospect<br>(BS: negative,<br>IA: 10-100)            | Water associated<br>with hydrocarbon<br>accumulation |
| T-488                                                                                              | Connate water<br>(Sulin Na/Cl < 1)  | A sign<br>offine oil<br>and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water associated<br>with petroleum<br>(IBE > 0.129) | Water associated<br>with hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in contact<br>with the oil or<br>located near<br>an oil pool<br>(SO4/HCO3< 3)                           | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(I > 10 mg/l)                           | Excellent<br>prospect<br>(BS: negative,<br>IA: < 10)         | Water associated<br>with hydrocarbon<br>accumulation |
| Arenal river                                                                                       | Meteoric water<br>(Sulin Na/Cl > 1) | A sign of a<br>good oil and<br>gas bearing<br>(NaHCO3)             | Meteoric water<br>(IBE: negative)                   | Water associated<br>with hydrocarbon<br>accumulation<br>(Cl/Br < 350) | Water in contact<br>with the oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 2) | Native sulphur<br>deposit<br>(BS: positive,<br>IA: 100-1000) | n/a                                                  |
| Mecatepec well                                                                                     | Meteoric water<br>(Sulin Na/Cl > 1) | A sign of a<br>good oil and<br>gas bearing<br>(NaHCO3)             | Meteoric water<br>(IBE: negative)                   | Water associated<br>with hydrocarbon<br>accumulation<br>(Cl/Br < 350) | Water in contact<br>with the oil or<br>located near<br>an oil pool<br>(SO4/HCO3< 3)                           | Water associated<br>with hydrocarbon<br>bearing reservoir<br>(Cl/Br < 120)                           | Good<br>prospect<br>(BS: negative,<br>IA: 10-100)            | n/a                                                  |

 Table 18. Relation to oil and gas deposit of waters in western Qaidam basin (China)

| Sample  | Water origin                          | Sulin (1946)                                                    | Schoeller<br>(1955)                                     | Bojarski<br>(1970)                                                                           | Vel'kov<br>(1960)                                                                                                  | Schoeneich<br>(1971)                                                                       | Buljan<br>(1962, 1963)                                  | $Li \ge 1$ and $B \ge 3$                                |
|---------|---------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| 1       | Connate water<br>(Sulin Na/Cl <<br>1) | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)    | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 2       | Connate water<br>(Sulin Na/Cl <<br>1) | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water<br>associated with<br>petroleum<br>(IBE > 0.129)  | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl < 1)    | n/a                                                                                                                | n/a                                                                                        | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10) | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 3, 5    | Connate water<br>(Sulin Na/Cl <<br>1) | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water<br>associated with<br>petroleum<br>(IBE > 0.129)  | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1) | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | Water<br>associated<br>with<br>hydrocarbo<br>n bearing<br>reservoirs<br>$(SO_4/HCO_3 < 2)$ | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10) | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 4       | Connate water<br>(Sulin Na/Cl <<br>1) | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> ) | Water<br>associated with<br>petroleum<br>(IBE > 0.129)  | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1) | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | n/a                                                                                        | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10) | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 6, 7, 9 | Connate water<br>(Sulin Na/Cl <<br>1) | A sign offine oil and gas                                       | Water<br>associated with<br>petroleum                   | Water<br>associated with                                                                     | n/a                                                                                                                | n/a                                                                                        | Excellent prospect                                      | Water<br>associated with                                |

|        |                                        | bearing<br>(CaCl <sub>2</sub> )                                                                                                                                | (IBE > 0.129)                                           | hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1)                             |                                                                                                                    |                                                                                            | (BS:<br>negative,<br>IA: < 10)                                         | hydrocarbon<br>accumulation                             |
|--------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|
| 8      | Connate water<br>(Sulin Na/Cl <<br>1)  | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> )                                                                                                | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)                   | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 10     | Connate water<br>(Sulin Na/Cl <<br>1)  | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> )                                                                                                | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1) | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | Water<br>associated<br>with<br>hydrocarbo<br>n bearing<br>reservoirs<br>$(SO_4/HCO_3 < 2)$ | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10)                | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 11     | Connate water<br>(Sulin Na/Cl <<br>1)  | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> )                                                                                                | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1) | n/a                                                                                                                | n/a                                                                                        | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10)                | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 12     | Connate water<br>(Sulin Na/Cl <<br>1)  | Exist in the<br>interior of<br>the oil and<br>gas fields<br>(MgCl <sub>2</sub> )                                                                               | Water<br>associated with<br>petroleum<br>(IBE > 0.129)  | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: 100-<br>1000) | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 13, 14 | Connate water<br>(Sulin Na/Cl <<br>1)  | Exist in the<br>interior of<br>the oil and<br>gas fields<br>(MgCl <sub>2</sub> )                                                                               | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)                   | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 15     | Connate water<br>(Sulin Na/Cl <<br>1)  | A sign offine<br>oil and gas<br>bearing<br>(CaCl <sub>2</sub> )                                                                                                | Water<br>associated with<br>petroleum<br>(Cl/Mg > 5.13) | Water<br>associated with<br>hydrocarbon<br>accumulation<br>(SO <sub>4</sub> x 100/Cl <<br>1) | n/a                                                                                                                | n/a                                                                                        | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10)                | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 16     | Connate water<br>(Sulin Na/Cl <<br>1)  | Exist in the<br>interior of<br>the oil and<br>gas fields<br>(MgCl <sub>2</sub> )                                                                               | Water<br>associated with<br>petroleum<br>(Mg/Ca > 5.24) | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: >1000)        | Water<br>associated with<br>hydrocarbon<br>accumulation |
| 17     | Meteoric water<br>(Sulin Na/Cl ><br>1) | Reflect a<br>weak<br>enclosed<br>conditionon<br>which the oil<br>and gas<br>could not be<br>gathered or<br>stored easily<br>(Na <sub>2</sub> SO <sub>4</sub> ) | Meteoric water<br>(IBE: negative)                       | n/a                                                                                          | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | Water<br>associated<br>with<br>hydrocarbo<br>n bearing<br>reservoirs<br>$(SO_4/HCO_3 < 2)$ | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: 10-100)       | No data                                                 |
| 18     | Connate water<br>(Sulin Na/Cl <<br>1)  | Exist in the<br>interior of<br>the oil and<br>gas fields<br>(MgCl <sub>2</sub> )                                                                               | Meteoric water<br>(IBE: negative)                       | n/a                                                                                          | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | Water<br>associated<br>with<br>hydrocarbo<br>n bearing<br>reservoirs<br>$(SO_4/HCO_3 < 2)$ | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: 10-100)       | No data                                                 |
| 19     | Connate water<br>(Sulin Na/Cl <<br>1)  | Exist in the<br>interior of<br>the oil and                                                                                                                     | Meteoric water<br>(IBE: negative)                       | n/a                                                                                          | n/a                                                                                                                | n/a                                                                                        | Native<br>sulphur<br>deposit                                           | No data                                                 |

# High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits ..

|               |                                        | gas fields<br>(MgCl <sub>2</sub> )                                  |                                   |     |                                                                                                                    |                                                                                            | (BS:<br>positive,<br>IA: 10-100)                                       |         |
|---------------|----------------------------------------|---------------------------------------------------------------------|-----------------------------------|-----|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|
| 20, 21,<br>22 | Meteoric water<br>(Sulin Na/Cl ><br>1) | A sign of a<br>good oil and<br>gas bearing<br>(NaHCO <sub>3</sub> ) | Meteoric water<br>(IBE: negative) | n/a | Water in<br>contact<br>withthe oil or<br>located near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>3) | Water<br>associated<br>with<br>hydrocarbo<br>n bearing<br>reservoirs<br>$(SO_4/HCO_3 < 2)$ | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: 100-<br>1000) | No data |

### **Table 19.** Relation to oil and gas deposit of waters in Adıyaman oil fields (Turkey)

| Sample                      | Water<br>origin                           | Sulin (1946)                                                                                                                                             | Schoeller<br>(1955)                                           | Bojarski<br>(1970)                                                                               | Vel'kov<br>(1960)                                                                                                | Schoeneich<br>(1971)                                                                                          | Buljan<br>(1962, 1963)                                          | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |
|-----------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|
| ADL                         | Meteoric<br>water<br>(Sulin<br>Na/Cl > 1) | Reflect a weak<br>enclosed<br>conditionon<br>which the oil<br>and gas could<br>not be gathered<br>or stored easily<br>(Na <sub>2</sub> SO <sub>4</sub> ) | Meteoric<br>water<br>(IBE:<br>negative)                       | n/a                                                                                              | Water in<br>contact withthe<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: 10-100 | No data                                              |
| KS                          | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | Exist in the<br>interior of the<br>oil and gas<br>fields (MgCl <sub>2</sub> )                                                                            | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | n/a                                                                                              | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Native<br>sulphur<br>deposit<br>(BS:<br>positive,<br>IA: < 10)  | No data                                              |
| FG                          | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | Exist in the<br>interior of the<br>oil and gas<br>fields (MgCl <sub>2</sub> )                                                                            | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(100 x SO <sub>4</sub> /Cl<br>< 1) | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10)         | No data                                              |
| Adıyaman<br>7               | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> )                                                                                             | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(100 x SO <sub>4</sub> /Cl<br>< 1) | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Excellent<br>prospect<br>(BS:<br>negative,<br>IA: < 10)         | No data                                              |
| A 32, SK<br>19,<br>NK 21    | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> )                                                                                             | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(Cl/Br < 350)                      | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)            | No data                                              |
| A 44                        | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | Exist in the<br>interior of the<br>oil and gas<br>fields (MgCl <sub>2</sub> )                                                                            | Water<br>associated<br>with<br>petroleum<br>(Cl/Mg ><br>5.13) | n/a                                                                                              | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)            | No data                                              |
| Adıyaman<br>52              | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> )                                                                                             | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | (4), good zone<br>for the<br>preservation of<br>hydrocarbons                                     | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100)            | No data                                              |
| BatıFırat2,BatıFırat11,Batı | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> )                                                                                             | Water<br>associated<br>with<br>petroleum                      | n/a                                                                                              | Water in<br>contact with the<br>oil or located<br>near                                                           | Water<br>associated with<br>hydrocarbon                                                                       | Good<br>prospect<br>(BS:<br>negative,                           | No data                                              |

# High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits ..

| Fırat 12,<br>Batı Fırat<br>13               |                                          |                                                              | (Cl/Mg > 5.13)                                                |                                                                             | an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)                                                           | bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <                                                  | IA: 10-100)                                          |                                                                                                                          |
|---------------------------------------------|------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Beşikli 1,<br>Beşikli<br>7/A,<br>Beşikli 19 | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | (4), good zone<br>for the<br>preservation of<br>hydrocarbons                | Water in<br>contact withthe<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | Water<br>associate<br>d with<br>hydrocar<br>bon<br>accumul<br>ation<br>(Beşikli<br>7),<br>No data<br>of other<br>samples |
| Be 10, K<br>14                              | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(Cl/Mg ><br>5.13) | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | n/a                                                                                                              | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | Water<br>associate<br>d with<br>hydrocar<br>bon<br>accumul<br>ation                                                      |
| Ç 14                                        | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in<br>contact withthe<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> <<br>2) | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | No data                                                                                                                  |
| Ç 44                                        | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(I > 10 mg/l)                              | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | n/a                                                                                                                      |
| G.Karakuş<br>11                             | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(Cl/Br < 350) | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO4/HCO3< 3)                           | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | Water<br>associate<br>d with<br>hydrocar<br>bon<br>accumul<br>ation                                                      |
| Karakuş 5                                   | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(Cl/Mg ><br>5.13) | (4), good zone<br>for the<br>preservation of<br>hydrocarbons                | Water in<br>contact with the<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3) | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | No data                                                                                                                  |
| Karakuş<br>21                               | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(Cl/Mg ><br>5.13) | (4), good zone<br>for the<br>preservation of<br>hydrocarbons                | Water in contact with the oil or located near an oil pool (SO <sub>4</sub> /HCO <sub>3</sub> < 3)                | Water<br>associated with<br>hydrocarbon<br>bearing<br>reservoir<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 2)    | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | No data                                                                                                                  |
| NK 20                                       | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(IBE > 0.129)     | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(Cl/Br < 350) | Water in<br>contact withthe<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | No data                                                                                                                  |
| Ik 9                                        | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | A sign offine<br>oil and gas<br>bearing (CaCl <sub>2</sub> ) | Water<br>associated<br>with<br>petroleum<br>(Cl/Mg ><br>5.13) | Water<br>associated<br>with<br>hydrocarbon<br>accumulation<br>(I > 1 mg/l)  | Water in<br>contact withthe<br>oil or located<br>near<br>an oil pool<br>(SO <sub>4</sub> /HCO <sub>3</sub> < 3)  | n/a                                                                                                           | Good<br>prospect<br>(BS:<br>negative,<br>IA: 10-100) | Water<br>associate<br>d with<br>hydrocar<br>bon<br>accumul<br>ations                                                     |

#### Petroleum and Subsurface Geology

Chebotarev (1955), Bojarski (1970) and Wei et al. (1996) classifications are selected in order to perform the assessments regarding the petroleum and subsurface geology characteristics of the basin where the water samples belong.

Meteoric-origin waters in selected areas (Sulin Na/Cl > 1); examples of Jujo and Tecominoacán samples Arenal and Mecatepec wells (Table 20); samples no. 17, 20, 21, 22, 23 of West Qaidam basin (Table 21); ADL, KS and FG samples of Adiyaman oilfields (Table 22) were found in the hydrodynamic zone (recharge zone) according to the Chebotarev classification and the connate-origin water of all the fields take place in hydrostatic zone (Sulin Na/Cl < 1). Only sample no. A44 of Adiyaman oilfields takes plane in the pressure zone (transition zone) (Table 22). In the study of Çelik and Sarı (2002), A44 sample is defined as "brackish water" as different from other water types (Fig. 19) and its hydrochemical facies is NaCI-HCO<sub>3</sub> (Table 16) and according to the Sulin classification, only A44 sample, MgCl<sub>2</sub>, among the connate-origin water is identified as (Exist in the interior of the oil and gas field) (Table 19). Here, it can be seen that the water in the pressure zones (transition zone) is brackish-type water. Boschetti (2011) and Boschetti et al. (2014) have examined the characteristics of the water in pressure zones in their study in detail. According to these results, the consequence that the hydrodynamic and hydrostatic zones of the Chebotarev classification are quite successful, is obtained.



Fig. 19. Chloride concentrations versus TDS in Adıyaman region waters (Çelik and Sarı, 2002)

According to Bojarski (1970) classification, all the Jujo and Tecominoacán field reservoir waters (Table 20), samples no. 2, 3, 4, 5 of West Qaidam basin (Table 21), samples no. A32 and C14 of Adıyaman oilfields (Table 22) are classified as "(5), Presence of ancient residual sea water". Samples no. 6, 7, 8, 9, 10 and 11 of West Qaidam basin (Table 21), other formation water samples excluding A32 and C14 of Adıyaman oil fields (Table 22) "(4), Good zone for the preservation of hydrocarbons". Sample no. 1 of West Qaidam basin is identified as "(1), Zone of little prospect for the preservation of hydrocarbon deposits" (Table 21). As a result of the Wei et al. (1996) classification; the same sample (sample no. 1 of West Qaidam basin) is identified as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, oil and gas lost in large amounts" (Table 21). Sample no. 1 of West Qaidam basin is taken from the Xiaoliangshan anticlinal. Xiaoliangshan anticlinal is located in a more active tectonic zone when compared to other anticlinals (Figs, 17 and 22). This situation explains the reason of different identifications performed for the same sample in the classification.

According to the classification of Wei et al. (1996), Jujo and Tecominoacán field reservoir water samples (excluding J-26, T143A, T149) are identified as "(I), Trap is not destroyed, oilfield water tending to be stagnant, complete cover strata" (Table 20); J-26, T143A, T149 samples are identified as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, oil and gas lost in large amounts" (Table 20). J-26 sample is a faulty area near a salt diapir and where the contours are compressed topographically. Also, the fact that J-26 well is one of the first wells coming from Jujo-Tecominoacán reservoirs in 1993 confirms the classification made for the J-26 production well (Fig. 18, Birkle et al., 2009b). The presence of T143A sample on a fault and in an oil-water contact and the presence of T149 sample on a fault, and the presence of topographical contours in a compressed area confirm the accuracy of the

#### High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits ..

classification (Figs, 16 and 20). Also, between 1993 and 2001, the water movement/fluid migration from the west side of Jujo and Tecominoacán sites reservoir that is an anticlinal-type reservoir, towards the center and then to the east side (especially from T-143A and T-149 wells in 1999) verifies the classification made for T-143A and T-149 wells (Fig. 21; Birkle et al., 2009b). The fact that the classifications of petroleum and subsurface geology for the J-26 and T-143A and T-149 wells are in accordance with the sample field data is an indicator for that the classification made by Wei et al. (1996) is quite efficient.

| Sample                                                                                                         | Sample<br>type     | Water<br>origin                           | Bojarski<br>(1970)                                   | Chebotarev<br>(1955)                                                                                                                                                                          | Wei ve diğ.<br>(1996)                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J-3A, J-5, J-13A, J-<br>14D, J-27, J-54, J-65,<br>J-438, T-119, T-120,<br>T-125, T-127, T-448,<br>T-468, T-488 | Reservoir<br>water | Connate<br>water<br>(Sulin<br>Na/Cl < 1)  | (5), Presence<br>of ancient<br>residual sea<br>water | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (I), Trap is not destroyed,<br>oilfield water tending to be<br>stagnant, complete cover strata                                                                                                                                   |
| J-26                                                                                                           | Reservoir<br>water | Connate<br>water<br>(Sulin<br>Na/Cl < 1)  | (5), Presence<br>of ancient<br>residual sea<br>water | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface,<br>oilfield water relatively<br>strongly active, surface water<br>permeating, incomplete cover<br>strata, oil and gas lost in large<br>amounts |
| T-143A                                                                                                         | Reservoir<br>water | Connate<br>water<br>(Sulin<br>Na/Cl < 1)  | (5), Presence<br>of ancient<br>residual sea<br>water | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, salt accumulation<br>prevails upon leaching, sometimes<br>2400 - 3900 m          | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface,<br>oilfield water relatively<br>strongly active, surface water<br>permeating, incomplete cover<br>strata, oil and gas lost in large<br>amounts |
| T-149                                                                                                          | Reservoir<br>water | Connate<br>water<br>(Sulin<br>Na/Cl < 1)  | (5), Presence<br>of ancient<br>residual sea<br>water | (V), Zone of accumulation,<br>stagnant conditions, different, salt<br>accumulation prevails upon<br>leaching, different                                                                       | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface,<br>oilfield water relatively<br>strongly active, surface water<br>permeating, incomplete cover<br>strata, oil and gas lost in large<br>amounts |
| Arenal river                                                                                                   | Surface<br>water   | Meteoric<br>water<br>(Sulin<br>Na/Cl > 1) | n/a                                                  | (I), Zone of recharge, active<br>exchange, different, intensive<br>flush, usually less than 150 m                                                                                             | n/a                                                                                                                                                                                                                              |
| Mecatepec well                                                                                                 | Groundw<br>ater    | Meteoric<br>water<br>(Sulin<br>Na/Cl > 1) | n/a                                                  | (I), Zone of recharge, active<br>exchange, different, intensive<br>flush, usually less than 150 m                                                                                             | n/a                                                                                                                                                                                                                              |

Table 20. Petroleum and subsurface geology of Jujo-Tecominoacán field



Fig. 20. Tectonic map of Jujo-Tecominoacán field (modified from Bourdet, 2008)



Fig. 21. Lateral distribution of the water contribution (in % of the total fluid production) in production wells of the Jujo-Tecominoacán field from 1993 to 2003 (Birkle et al., 2009b)

According to the classification of Wei et al. (1996), samples no. 2, 3, 4, 5, 6 and 7 of West Qaidam basin oilfield brines are identified as "(I), Trap is not destroyed, oilfield water tending to be stagnant, complete cover strata" (Table 20); samples no. 8, 9, 10, are identified as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, oil and gas lost in large amounts" (Table 20). Sample no. 12 of the salt lake brines is identified as "(I), Trap is not destroyed, oilfield water tending to be stagnant, complete cover strata" (Table 20); samples no. 13 and 14 are identified as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface water permeating, incomplete cover strata, surface, surface water relatively strongly active, surface water permeating, incomplete cover strata, surface, surface water relatively strongly active, surface water permeating, incomplete cover strata, surface, surface, surface water relatively strongly active, surface water permeating, incomplete cover strata, surface, surface water permeating, incomplete cover strata, surface, surface water permeating, incomplete cover strata, surface, surface, surface water permeating, incomplete cover strata, surface, surface water permeating, incomplete cover strata, surface, surfac

The thick-sequence of primary petroleum source rocks of the Qaidam basin was deposited in the major rifted depression and the restricted drainage graben of the rifted protobasin. During the tectonic inversion megastage they were subject to deep burial and prolonged heating. A major and a minor oil-generating basin have developed. The tectonic inversion processes produced several structural features that may contain potential hydrocarbon reservoirs and traps (Xia et al., 2001). Petroleum reservoirs in the basin take place in the area called as the oil hill and its immediate vicinity (Fig. 22). According to the classification of Wei et al. (1996), the samples of West Qaidam basin that are classified as "(I), Trap is not destroyed, oilfield water tending to be stagnant, complete cover strata" are the samples taken from this oil hill and its immediate vicinity (Fig. 17 and Table 20). The petroleum reservoirs in Qaidam basin are located in the northwest and northeast parts of basin. The samples identified as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, oil and gas lost in large amounts" (Table 20) take place in the south and southwest parts of the basin and they are the samples taken from the most tectonic and sediment areas of the basin (oil-generating depressions) (Figs. 17 and 22). Therefore, the classifications and the sample field data are totally compatible.

| Sample          | Sample type               | Water<br>origin                          | Bojarski<br>(1970)                                                                    | Chebotarev<br>(1955)                                                                                                                                                                          | Wei ve diğ.<br>(1996)                                                                                                                                                                                                         |
|-----------------|---------------------------|------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | Oilfield brine            | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | (1), Zone of little<br>prospect for the<br>preservation of<br>hydrocarbon<br>deposits | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface, oilfield<br>water relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil and gas<br>lost in large amounts |
| 2, 3,<br>4, 5   | Oilfield brine            | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | (5), Presence of<br>ancient residual<br>sea water                                     | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (I), Trap is not destroyed, oilfield<br>water tending to be stagnant,<br>complete cover strata                                                                                                                                |
| 6,7             | Oilfield brine            | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | (4), Good zone<br>for the<br>preservation of<br>hydrocarbons                          | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (I), Trap is not destroyed, oilfield<br>water tending to be stagnant,<br>complete cover strata                                                                                                                                |
| 8, 9,<br>10, 11 | Oilfield brine            | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | (4), Good zone<br>for the<br>preservation of<br>hydrocarbons                          | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface, oilfield<br>water relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil and gas<br>lost in large amounts |
| 12              | Salt lake<br>brine        | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | n/a                                                                                   | n/a                                                                                                                                                                                           | (I), Trap is not destroyed, oilfield<br>water tending to be stagnant,<br>complete cover strata                                                                                                                                |
| 13, 14          | Salt lake<br>brine        | Connate<br>water<br>(Sulin Na/Cl<br>< 1) | n/a                                                                                   | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale time,<br>sometimes 2400 - 3900 m | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface, oilfield<br>water relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil and gas<br>lost in large amounts |
| 15              | Intercrystalline<br>brine | Connate<br>water                         | (4), Good zone<br>for the                                                             | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly                                                                                                   | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface, oilfield<br>water relatively strongly active,                                                                                               |

Table 21. Petroleum and subsurface geology of western Qaidam basin

High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits ..

| -          |                           |                                           |                 |                                                                                                   |                                                                                                                                                                                                                               |
|------------|---------------------------|-------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                           | (Sulin Na/Cl                              | preservation of | folded zones, water exchange                                                                      | surface water permeating,                                                                                                                                                                                                     |
|            |                           | < 1)                                      | hydrocarbons    | manifests on geological scale time,                                                               | incomplete cover strata, oil and gas                                                                                                                                                                                          |
|            |                           |                                           |                 | sometimes 2400 - 3900 m                                                                           | lost in large amounts                                                                                                                                                                                                         |
| 16         | Intercrystalline<br>brine | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | n/a             | n/a                                                                                               | (III <sub>2</sub> ), Strong tectonic uplifting,<br>faults leading to the surface, oilfield<br>water relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil and gas<br>lost in large amounts |
| 17         | Spring water              | Meteoric<br>water<br>(Sulin Na/Cl<br>> 1) | n/a             | (I), Zone of recharge, active<br>exchange, different, intensive<br>flush, usually less than 150 m | n/a                                                                                                                                                                                                                           |
| 18, 19     | Groundwater               | Connate<br>water<br>(Sulin Na/Cl<br>< 1)  | n/a             | n/a                                                                                               | n/a                                                                                                                                                                                                                           |
| 20, 21, 22 | Groundwater               | Meteoric<br>water<br>(Sulin Na/Cl<br>> 1) | n/a             | (I), Zone of recharge, active<br>exchange, different, intensive<br>flush, usually less than 150 m | n/a                                                                                                                                                                                                                           |



**Fig. 22.** A: Distribution map of oil-generating depression and anticline in western Qaidam basin, B: (B) Yaojin-Youshashan (oil hill) cross section, showing the reversed structures formed by basin tectonic inversion processes (from Xia et al., 2001)

Only 4 of 22 samples taken from Adıyaman oilfields (A32, Adıyaman 52, Beşikli 1, Beşikli 7A and Beşikli 19 samples) are identified as "(I), Trap is not destroyed, oilfield water tending to be stagnant, complete cover strata". Other samples are defined as "(III<sub>2</sub>), Strong tectonic uplifting, faults leading to the surface, oilfield water relatively strongly active, surface water permeating, incomplete cover strata, oil and gas lost in large amounts" (Table 22). In most of the wells at Adıyaman oilfields,  $CO_2$  and  $O_2$  concentration are high and water production is about 90% as an average (Hoşhan et al., 2008; Çelik and Sarı, 2002; Table 23). This data indicates that there is a significant uplift in the region and the oil is located in local and very limited traps. Hence, it verifies the accuracy of the classification made.

| Sample                                                                                                                                                                        | Sample<br>type     | Water origin                        | Bojarski<br>(1970)                                           | Chebotarev<br>(1955)                                                                                                                                                                             | Wei ve diğ.<br>(1996)                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADL                                                                                                                                                                           | Fresh<br>water     | Meteoric water<br>(Sulin Na/Cl > 1) | n/a                                                          | (I), Zone of recharge, active<br>exchange,different, intensive<br>flush, usually less than 150 m                                                                                                 | n/a                                                                                                                                                                                                                                 |  |
| KS, FG                                                                                                                                                                        | Fresh<br>water     | Connate water<br>(Sulin Na/Cl < 1)  | n/a                                                          | (I), Zone of recharge, active<br>exchange,different, intensive<br>flush, usually less than 150 m                                                                                                 | n/a                                                                                                                                                                                                                                 |  |
| Adıyaman 7, Batı<br>Fırat 2, Batı Fırat 11,<br>Batı Fırat 12, Batı<br>Fırat 13, Be 10, Ç 44,<br>G.Karakuş 11, SK 19,<br>Karakuş 5, K 14,<br>Karakuş 21, NK 20,<br>NK 21, Ik 9 | Formation<br>water | Connate water<br>(Sulin Na/Cl < 1)  | (4), Good zone<br>for the<br>preservation of<br>hydrocarbons | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale<br>time, sometimes 2400 - 3900 m    | (III <sub>2</sub> ), Strong tectonic<br>uplifting, faults leading to<br>the surface, oilfield water<br>relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil<br>and gas lost in large<br>amounts |  |
| A 32                                                                                                                                                                          | Formation<br>water | Connate water<br>(Sulin Na/Cl < 1)  | (5), Presence of<br>ancient residual<br>sea water            | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale<br>time, sometimes 2400 - 3900<br>m | (I), Trap is not destroyed,<br>oilfield water tending to be<br>stagnant, complete cover<br>strata                                                                                                                                   |  |
| A 44                                                                                                                                                                          | Formation<br>water | Connate water<br>(Sulin Na/Cl < 1)  | n/a                                                          | (IV), Zone of pressure,<br>delayed<br>exchange, deeper portions of<br>structures, folded zones,<br>circulation and drainage<br>limited, 900 - 1200 m                                             | (III <sub>2</sub> ), Strong tectonic<br>uplifting, faults leading to<br>the surface, oilfield water<br>relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil<br>and gas lost in large<br>amounts |  |
| Adıyaman 52,<br>Beşikli 1,<br>Beşikli 7/A,<br>Beşikli 19                                                                                                                      | Formation<br>water | Connate water<br>(Sulin Na/Cl < 1)  | (4), Good zone<br>for the<br>preservation of<br>hydrocarbons | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale<br>time, sometimes 2400 - 3900<br>m | (I), Trap is not destroyed,<br>oilfield water tending to be<br>stagnant, complete cover<br>strata                                                                                                                                   |  |
| Ç 14                                                                                                                                                                          | Formation<br>water | Connate water<br>(Sulin Na/Cl < 1)  | (5), Presence of<br>ancient residual<br>sea water            | (V), Zone of accumulation,<br>stagnant conditions, deeper<br>portions of structures, highly<br>folded zones, water exchange<br>manifests on geological scale<br>time, sometimes 2400 - 3900<br>m | (III <sub>2</sub> ), Strong tectonic<br>uplifting, faults leading to<br>the surface, oilfield water<br>relatively strongly active,<br>surface water permeating,<br>incomplete cover strata, oil<br>and gas lost in large<br>amounts |  |

Table 22. Petroleum and subsurface geology of Adıyaman oil fields

| Well Name                | Gravity<br>(API)                             | Sulphur<br>ratio<br>(%) | Water<br>production<br>(barrel/day) | Oil<br>production<br>(barrel/day) | Water<br>ratio<br>(%) | Fluid<br>level<br>(m) | Well<br>depth<br>(m) | Oil<br>Production<br>Screen<br>level<br>(m) | Oil<br>production<br>formation                      |
|--------------------------|----------------------------------------------|-------------------------|-------------------------------------|-----------------------------------|-----------------------|-----------------------|----------------------|---------------------------------------------|-----------------------------------------------------|
| Adıyaman-7               | 26.7                                         | 1.5                     | 202                                 | 12                                | 94                    | 432                   | 1064                 |                                             | Karababa<br>+<br>Karaboğaz                          |
| A32 (Adıyaman-32)        |                                              |                         |                                     |                                   | 94                    | 949                   | 1636                 | 1628-1636                                   |                                                     |
| A44 (Adıyaman-44)        |                                              |                         |                                     |                                   | 93                    | 338                   |                      | 1679-1685                                   |                                                     |
| Adıyaman-52              |                                              |                         | 130                                 | 18                                | 86                    | 1569                  | 1582                 |                                             |                                                     |
| Batı Fırat-2             |                                              | 1.1                     | 360                                 | 22                                | 94                    | 1034                  | 1522                 |                                             | Karababa<br>+ Derdere                               |
| Batı Fırat-6             |                                              |                         | 90                                  | 23                                | 74                    | 1800                  | 1800                 |                                             |                                                     |
| Batı Fırat-9             | 35.2                                         |                         | 22                                  | 7                                 | 70                    | 1817                  | 1817                 |                                             |                                                     |
| Batı Fırat -11           | 55.2                                         |                         | 411                                 | 21                                | 95                    | 206                   | 958                  |                                             |                                                     |
| Batı Fırat-12            |                                              |                         | 480                                 | 96                                | 80                    | 329                   | 949                  |                                             |                                                     |
| Batı Fırat-13            |                                              |                         | 100                                 | 16                                | 84                    | 1184                  | 1856                 |                                             |                                                     |
| Ç14 (Çemberlitaş-<br>14) | 31                                           | 0.7                     |                                     | 50                                | 94                    | 394                   |                      | 2957-2975                                   | Karababa C                                          |
| Ç44 (Çemberlitaş-<br>44) |                                              |                         |                                     | (well<br>average)                 | 97                    | 835                   |                      | 3017-3025                                   | Derdere                                             |
| Karakuş-5                |                                              |                         | 1218                                | 37                                | 97                    | 1598                  | 2359                 |                                             | Karaboğaz<br>+ Karababa<br>+ Derdere +<br>Sabunsuyu |
| Karakuş-7                |                                              |                         | 400                                 | 160                               | 60                    | 1391                  | 1778                 |                                             |                                                     |
| Karakuş-12               | 30                                           |                         | 4374                                | 87                                | 98                    | 554                   | 1779                 |                                             |                                                     |
| Karakuş-13               |                                              |                         | 352                                 | 253                               | 28                    | 1739                  | 2196                 |                                             |                                                     |
| K14 (Karakuş-14)         |                                              |                         |                                     |                                   | 98                    | 695                   |                      | 2547-2554                                   |                                                     |
| Karakuş-21               |                                              |                         | 260                                 | 13                                | 95                    | 902                   | 1621                 |                                             |                                                     |
| Beşikli-1                |                                              | 2.4                     | 300                                 | 60                                | 80                    | 1353                  | 1625                 |                                             | Karaboğaz<br>+ Karababa                             |
| Beşikli-2                |                                              |                         | 225                                 | 86                                | 62                    | 1166                  | 1838                 |                                             |                                                     |
| Beşikli-7/A              | 25.6                                         |                         | 134                                 | 27                                | 80                    | 1062                  | 1795                 |                                             |                                                     |
| Beşikli -9               |                                              |                         | 305                                 | 73                                | 76                    | 1306                  | 1761                 |                                             |                                                     |
|                          |                                              |                         |                                     |                                   |                       |                       |                      | 1893-1905                                   | Karaboğaz                                           |
| Be 10 (Beşikli-10)       |                                              |                         |                                     |                                   | 80                    | 893                   |                      | 1925-1934                                   | Karababa C                                          |
| Beşikli -19              |                                              |                         | 255                                 | 10                                | 96                    | 949                   | 1684                 |                                             |                                                     |
| G.Karakuş-11             | 26.5                                         |                         |                                     |                                   |                       |                       |                      | 2536-2549                                   | Karaboğaz<br>Karababa C                             |
|                          |                                              |                         | 163                                 | 26                                | 81                    | 1301                  | 1734                 | 2598-2628                                   | Karababa B                                          |
| SK-19 (G.Karakus-        |                                              |                         | 105                                 | 20                                | 04                    | 1391                  | 1754                 | 2410-2435                                   | Derdere                                             |
| 19)                      |                                              |                         |                                     |                                   | 92                    | 1320                  | -                    | 2576 2505                                   | D                                                   |
| NK20 (Kuzey              | NK20 (Kuzey<br>Karakuş-20) 29<br>NK21 (Kuzey | 0.8                     |                                     |                                   |                       |                       |                      | 2576-2595                                   | Derdere                                             |
| Karakuş-20)              |                                              |                         |                                     |                                   | 94                    | 587                   |                      | 2007-2039                                   | Derdere                                             |
|                          |                                              |                         |                                     |                                   |                       |                       |                      | 2520-2535                                   | Sayındere                                           |
| NK21 (Kuzey              |                                              |                         |                                     |                                   |                       |                       |                      | 2590-2615                                   | Karababa B<br>+                                     |
| Karakuş-21)              |                                              |                         |                                     |                                   | 94                    | 658                   |                      | 0010 0057                                   | Karababa C                                          |
| Ik-9 (İkizce-9)          | 26.4                                         | 2.2                     |                                     | 50<br>(well<br>average)           | 98                    | 37                    |                      | 2249-2255                                   | Derdere                                             |

Table 23. Oil and water productions and API gravity of wells in the Adıyaman oil fields (Data: Hoşhan et al.,2008; Çelik and Sarı, 2002; PDGA, 2008; DPT, 2001)

In the 4 classifications selected for the identification of types and origins of the water samples (Sulin, 1946; Chebotarev 1955; Wei et al., 1996 and Rosental, 1997), the identifications used for the same types of water are different from each other. The use of the hydrochemical facies for the identification of the water type of the samples studied in petroleum hydrogeology studies and the identifications of Sulin (1946) classification within definition of water origin that is determined by Na/Cl (%meq) ratio and recommended by Roger (1917) (connate or meteoric-origin water) eliminates this difference.

In order to perform the assessments regarding the geological environment where the water samples are derived; Cheboratev and Clark classifications are used. In Cheboratev and Clark classifications, in case different results are obtained for the same water sample, as detailed in Lawrence and Cornfordt (1995), the consequence that fluids are derived from different sources in the sedimentary basin mix with each other and the oilfield water is a mixture of these fluids, is obtained.

In order to assess the relation of water samples and an oil and gas deposit; the results of (1946), Schoeller (1955), Bojarski (1970), Vel'kov (1960), Schoneich (1971), Buljan (1962, 1963), Li and B classifications that take Li and B ratios as a basis are compatible with the results of fields examined as a sample.

In case the iodine analysis results of investigated basin water samples are available, the Bojarski (1970) classification preferred method since it specifies the waters associated with hydrocarbon deposits are directly based on iodine content. In case of iodine analysis results of the investigated basin water samples are not present, the Br/Cl < 350 approach proposed by Borjarski (1970) becomes prominent.

In order to determine that the B ratio in the connate water that is developed by the mixture of different fluids (primarily magmatic fluids and formation waters) (due to magmatic contribution) is high, there is no iodine data and to determine the water related to oil and gas deposis in the basins with Br/Cl > 350; it is suitable to use the Li  $\geq 1$  and B  $\geq 3$  approach that is recommended by the authors together with the (SO<sub>4</sub> x 100)/Cl < 1 equation that is recommended by Bojarski (1970).

It is observed that Buljan (1962, 1963) classification is found to be quite compatible with the data on all the fields sampled (Tables 17, 18 and 19). Jamil (2004) has tested this classification on oilfield waters in Iraq and has achieved similar results with this study regarding applicability of classification.

It is found that Chebotarev (1955) and Bojarski (1970) classifications are quite successful in the determination of hydrodynamic and hydrostatic zones. Compliance of the petroleum and subsurface geology classifications in Wei et al. (1996) classification with the field data tested is an indicator that the classification made by Wei et al. (1996) is quite efficient. The proposed systematic study method for predicting the location, petroleum and subsurface geological properties of oil and gas deposits in a wildcat sedimentarybasin with high accuracy using hydrogeochemical methods is given in Fig. 23.



Fig. 23. Systematic work flow chartproposed forhigh-accuracy estimation with hydrochemical methods of oil and gas deposits in a wildcat sedimentarybasin

The iodine in waters is an important and well-known indicator of oil and gas. In most natural waters, the content of iodine is negligible. In fresh surface waters and fresh groundwaters, the iodine content is from  $10^{-5}$  to  $10^{-3}$  mg/l, in sea water about 5 x  $10^{-2}$ mg/l, in underground saline waters  $10^{-1}$  to 1 mg/l (Kartsev et al., 1954). Characteristics of water associated with hydrocarbon accumulations are iodide > 1 mg/l (Çoban, 2017; Collins,

1975; Borjarski, 1970 and many others). Portable iodine checkers are capable of measuring the amount of iodine in the water up to 12.5 mg/l are developed and they are available on the market (Fig. 24). These portable iodine checkers can be used for obtaining a preliminary idea regarding the field being studied and to select samples that will be sent to the analysis of the samples for the water resources (springs and wells) in investigation.



Fig. 24. Portable iodine checker

In order to test the applicability of the systematic method shown in Figure 23, assessments on the current analysis results of the cold and hot water resources in Central Anatolian region (Turkey) where no detailed oil and gas exploration is done and there is no production fields but the presence of oil seep as specified in Erentöz and Ternek (1959) are performed. As a result of the assessments made, water samples are taken from the specified water resources in order to perform iodine analysis. In 4 of these water samples that are analyzed; the presence of more than 1 mg/l is determined (Table 24 and Map 1).

| Sample | Sample Name              | Location             | Coordinates | Iodine     |        |
|--------|--------------------------|----------------------|-------------|------------|--------|
| No     |                          |                      | Latitute    | Longitute  | (mg/l) |
|        | Karakaya mineral water   |                      |             |            |        |
| 1      | -                        | Ürgüp / Nevşehir     | 38.717228°  | 35.032163° | 4.18   |
|        | Yeşilhisar mineral water |                      |             |            |        |
| 2      | -                        | Yeşilhisar / Kayseri | 38.412021°  | 35.074547° | 3.55   |
|        | Narlıgöl Thermal         |                      |             |            |        |
| 3      | bath water               | Merkez / Niğde       | 38.344714°  | 34.461820° | 2.75   |
|        | Yazır cold spring        | Kocasinan / Kayseri  |             |            |        |
| 4      | 1 0                      | -                    | 38.844077°  | 35.511399° | 2.31   |

**Table 24.** Iodine analysis results of water samples in Center Anatolia region (Turkey)



Map 1. Locations of water samples in Center Anatolia (Turkey), (yellow triangle : oil seep)

### VI. Conclusions

In this article, it is aimed to give an idea about how the hydrogeochemistry data could affect the success of oil and gas exploration projects in a basin or field-scale. Hydrogeochemistry data (chemical data of cold and hot water springs and wells) is a powerful tool to minimize the risk of hydrocarbon exploration in wildcat sedimentary basins. In this study; it is exemplified how the hydrogeochemistry data can guide the regional and local studies, and how the exploration teams can be supported regarding the minimization of the risk of drilling to be performed in known and future hydrocarbon basins. As an example, the results of the fields examined (including the Central Anatolian region sample) are completely compatible with the results of the classifications included in the program. It is clear that the results of analysis of water samples obtained from hydrogeochemical exploration studies in any wildcat sedimentary basin will provide crucial data regarding the petroleum and subsurface geology characteristics of petroleum and gas deposits in case they are interpreted by experienced engineers. It can also predicted that the classification methods of oilfield waters in the program will provide important contributions to the evaluation of petroleum and subsurface geology assessments to be made in the production phase and in the determination of the development direction of the field.

#### References

- Al-Marsoumi, H.A. and Abdul-Vahab, D.S., 2005. Hydrochemistry of Yamama reservoir formation water-West Qurna oil field-Southern Iraq. Basrah Journal of Science C., 23(1), 10-20
- [2]. Amiri, M. and Moghadasi, J., 2012. The prediction of calcium carbonate and calciumsulfate scale formation in Iranian oilfields atdifferent mixing ratios of injection waterwith formation water. Petroleum Science and Technology, 30, 223-236
- [3]. Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H.G.M., Kazemi, G.A. and Montaseri, A., 2014a. Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br)evidence for the origin of saline formation water in a gas reservoir. Chemical Geology 384, 62-75
- [4]. Bagheri, R., Nadri, A., Raeisi, E., Shariati, A., Mirbagheri, M. and Bahadori, F., 2014b. Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environmental Earth Sciences, 71, 7, 3171-3180
- [5]. Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H.G.M., Kazemi, G.A. and Montaseri, A., 2014c. Origin of brine in the Kangan gasfield: isotopicand hydrogeochemical approaches. Environmental Earth Sciences, 71, 7, 3171-3180
- [6]. Barnaby, R.J., Oetting, G.C. and Gao, G., 2004. Strontium isotopic signatures of oil-field waters: Applicationsfor reservoir characterization. AAPG Bulletin, 88(12), 1677-1704
- [7]. Bazin, B., Brosse, I. and Sommer, F., 1997a. Chemistry of oil-field brines in relation todiagenesis of reservoirs I. Use of mineral stabilityfields to reconstruct in situ water composition. Example of the Mahakam basin. Marine and Petroleum Geology, 14(5), 481-495
- [8]. Bazin, B., Brosse, I. and Sommer, F., 1997b. Chemistry of oil-field brines in relation todiagenesis of reservoirs-2. Reconstruction ofpalaeo-water composition for modelling illitediagenesis in the Greater Alwyn area (North Sea). Marine and Petroleum Geology, 14(5), 497-511
- [9]. Bentor, Y.K., 1969. On the evolution of subsurface brines in Israel. Chemical Geology. 4, 83-110
- Bernatsky, R., 1998. Hydrogeochemistry of formation waters in Southern Saskatchewan. University of Regina, MSc. Thesis, 206 p.
   Birkle, P., 2006. Application of <sup>129</sup>I/<sup>127</sup>I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich-Batab oil
- reservoirs, Bay of Campeche, southern Mexico. Journal of Geochemical Exploration, 89,15-18
- [12]. Birkle, P., García, B.M. and Padrón, C.M.M., 2009a. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction, Applied Geochemistry, 24, 543-554
- [13]. Birkle, P., García, B.M. and Padrón, C.M.M., 2009b. O Origin and evolution of formation water at the Jujo–Tecominoacán oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity, 24, 555-573
- [14]. Birkle, P., Aragon, J.J.P., Portugal, E.and Aguilar, J.L.F., 2002. Evolution and origin of deepreservoir water at theActivo Luna oil field,Gulf of Mexico, Mexico. AAPG Bulletin, 86(3), 457-484
- [15]. Birkle, P., 2016a. Geochemical fingerprinting of hydraulic fracturing fluidsfrom Qusaiba Hot Shale and formation water fromPaleozoic petroleum systems, Saudi Arabia. Geodluids, doi: 10.1111/gfl.12176
- [16]. Birkle, P., 2016b. Recovery rates of fracturingfluids and provenance of produced water from hydraulicfracturing of Silurian Qusaibahot shale, northern SaudiArabia, with implications onfracture network. AAPG Bulletin, 100(6), 917-941
- [17]. Birkle, P., Jenden, P.D. and Al-Dubaisi, J.M., 2013. Origin of formation water from the Unayzah and Khuffpetroleum reservoirs, Saudi Arabia. Procedia Earth and Planetary Science, 7, 77-80
- [18]. Birkle, P. and Angulo, M., 2005. Conceptual hydrochemical model of late Pleistoceneaquifers at the Samario-Sitio Grande petroleumreservoir, Gulf of Mexico, Mexico. Applied Geochemistry, 20, 1077-1098
- [19]. Bjorlykke, K., Aagaard, P., Egeberg, P.K. and Simmons, S.P., 1995. Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldsparand illite precipitation in reservoir rocks. Cubitt, J.M. and England, W.A. (eds), The Geochemistry of Reservoirs, Geological Society Special Publication No. 86, pp. 33-50.
- [20]. Blondes, M.S., Gans, K.D., Rowan, E.L., Thordsen, J.J., Reidy, M.E., Engle, M.A., Kharaka, Y.K. and Thomas, B., 2016. U.S. Geological Survey National Produced Waters Geochemical Database, Version 2.2. http://eerscmap.usgs.gov/pwapp/
- [21]. Bojarski, L., 1970. Die Anwendung der hydrochemischen Klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125
- [22]. Boschetti, T., 2011. Application of brine differentiation and Langelier-Ludwig plotsto fresh-to-brine waters from sedimentary basins: diagnostic potentials and limits. J. Geochem. Explor. 108, 126-130
- [23]. Boschetti, T., Angulo, B., Cabrera, F., Vásquez, J. and Montero, R.L., 2016. Hydrogeochemical characterization of oilfield waters from southeast MaracaiboBasin (Venezuela): diagenetic effects on chemical and isotopic composition. Marine and Petroleum Geology, 73, 228-248
- [24]. Boschetti, T., Toscani, L. and Marian, E.S., 2014. Boron isotope geochemistry of Na-bicarbonate, Na-chloride, and Ca-chloride waters from the Northern ApennineForedeep basin: other pieces of the sedimentary basinpuzzle. Geofluids, 15, 546-562
- [25]. Bourdet, J., 2008. Diagenetical and filling history of Mesozoic carbonate petroleum reservoirs of the Mexican Southeast Basin, Mexico. UHP, Nancy I, PhD Thesis, 358 p.
- [26]. Breen, K.J. and Masters, R.W., 1985. Chemical and Isotopic Characteristics of Brines From ThreeOil- and Gas-Producing Sandstones in Eastern Ohio, With Applications to The Geochemical Tracing of Brine Sources. U.S. Geological Survey. Water-InvestigationsReport. 84-4314, 58 p.
- [27]. Buljan, M., 1962. Nova geochemijska metoda za razlikovanje prirodnihvoda. Croat.Chem. Acta, 23, Zagreb, pp.12-23 (in Jamil, A.K., 2004. Hydrogeochemical indices for the prospecting of hydrocarbon and native sulphur deposits. Iraqi Jour. of Earth Sci., 4 (2), 1-10)

- [28]. Buljan, M., 1963. An aspect of geochemical significance of sea water among the naturalwaters. Rapp. Et Proc,-Verb. Des reunions de la Commis. Hnt. Expl. Sci. MerMediterrane, XVII (3), Paris (in Jamil, A.K., 2004. Hydrogeochemical indices for the prospecting of hydrocarbon and native sulphur deposits. Iraqi Jour. of Earth Sci., 4 (2), 1-10)
- [29]. Cakmakci, M., Kayaalp, N. and Koyuncu, I., 2008. Desalination of produced water from oil productionfields by membrane processes. Desalination, 222, 176-186
- [30]. Carpenter, B.A., Michael, T.L. and Edwarde, P.E., 1974. Preliminary report on the origin and chemical evolution of lead-and zincrich oil field brines in central Mississippi, Economic Geology, 69, 1191-1206
- [31]. Celik, M. and Sarı, A., 2002. Geochemistry of formation waters from upper cretaceous calcareous rocks of Southeast Turkey. Journal Geological Society of India. 59, 419-430
- [32]. Celik, M., Sarı, A., Bahtiyar, I. and Afşin, M., 1998. Origin of formation waters in Adıyaman oil fields. 12<sup>th</sup> International Petroleum Congress and Exhibition of Turkey, pp. 149-159
- [33]. Chan, L., Starinsky, A. and Katz, A., 2002. The behavior of lithium and its isotopes in oilfield brines: Evidence from theHeletz-Kokhav field, Israel. Geochimica et Cosmochimica Acta, 66, 4, 615-623
- [34]. Chave, K. E., 1960. Evidence on history of seawater from chemistry of deeper subsurface waters of ancient basins. Bull. Am. Assoc. Petrol. Geol., 44, 357-370.
- [35]. Chebotarev, I.I., 1955. Metamorphism of natural waters in the crust of weathering, 1-3. Geochim. Cosmochim. Acta, 8: 22-48, 137-170, 198-212
- [36]. Chilingar, G.V., Buryakovsky, L.A., Eremenko, N.A. and Gorfunkel, M.V., 2005. Geology and Geochemistry of Oil and Gas. Elsevier BV, 370 p.
- [37]. Chilingar, G.V., 1957. Soviet methods of reporting and displaying results of chemical analyses of natural waters and methods of recognizing oil-field waters. Trans. Am. Geophys. Union, 38(2): 219-221
- [38]. Chilingar, G.V., 1958. Chemical composition of oil-field waters from Apsheron Peninsula, Azerbaijan S.S.R.: A summary. Geochim. Cosmochim. Acta, 14: 168-172
- [39]. Chilingar, G. V. and Degens, E. T., 1964. Notes on chemistry of oil-field waters. Bol. Asoc. Mexicana Geol. Petrol., 15 (7-8): 177-193
- [40]. Cihaudhuri, S., Broedel, V. and Clauer, N., 1987. Strontium isotopic evolution of oil-field waters from carbonate reservoirrocks in Bindley field, Central Kansas, U.S.A. Geochimica et Cosmochimica Acta. 51, 45-53
- [41]. Chilingar, G.V., 1958. Chemical composition of oil-field waters from Apsheron Peninsula, Azerbaijan S.S.R.: A summary. Geochim. Cosmochim. Acta, 14: 168-172.
- [42]. Chunfang, C., Licai, P. Bowen, M. and Yingkai, X., 2006. B, Sr, O and H isotopic compositions of formation watersfrom the Bachu Bulge in the Tarim basin. Acta Geologica Sinica, 80(4), 550-556
- [43]. Clark, I., 2015. GroundwaterGeochemistryand Isotopes. Taylor & Francis Group, LLC., 421 p.
- [44]. Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496 p.
- [45]. Coustau, H., 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7, 213-241
- [46]. Çoban, M.K., 2017. Petrol Hidrojeolojisi (İkinci Baskı). Poyraz Ofset. 533 s. (Petroleum Hydrogeology, Second Edition, 533 p., in Turkish)
- [47]. De Sitter, L.U., 1947. Diagenesis of oil-field brines. Bull. Am. Assoc. Petrol. Geol., 31: 2030-2040
- [48]. Demir, I. and Seyler, B., 1999. Chemical composition and geologic history of saline waters in Aux Vases and CypressFormations, Illinois Basin. Aquatic Geochemistry, 5, 281-311
- [49]. Dia, A.N., Castrec-Rouelle, M., Boulegue, J. and Comeau, P., 1999. Trinidad mud volcanoes: Where do the expelled fluids come from ? . Geochimica et Cosmochimica Acta. 63(7/8), 1023-1038
- [50]. Dickey, P.A., Collins, A.G. and Fajardo M.I., 1972. Chemical composition of deep formation waters in Southwestern Louisiana. AAPG Bulletin, 56(8), 1530-1570
- [51]. Downing, R.A. and Howitt, F., 1968. Saline ground-waters in theCarboniferous rocks of theEnglish East Midlands inrelation to the geology. Q. J. Eng. Geol. 1, 1969, 241-269
- [52]. DPT, 2001. Petrol ve Doğalgaz Sektör Raporu, 130 s. ((Planning Organization of Turkey, Report of Oil and Natural Gas Sector, 130 p.)
- [53]. Dresel, P. E. and Rose, A.W., 2010. Chemistry and origin of oiland gas well brines in western Pennsylvania: Pennsylvania Geological Survey, 4th ser., Open-File Report OFOG 10-01.0, 48 p.
- [54]. Durov, S.A., 1948. Classification of natural waters and graphical presentation of their composition. Trans. USSR Acad. Sci., 59 (1), 87-90
- [55]. Egeberg, P.K. and Aagaard, P., 1989. Origin and evolution of formation waters from oil fields on the Norwegian shelf. Applied Geochemistry, 4, 131-142
- [56]. EIzarka, M.H. and Ahmed, W.A.M., 1983. Formational water characteristicsas an indicator for the process of oilmigration and accumulation at the Ain Zalah field, Northern Iraq. Journal of Petroleum Geology, 6(2), 165-178142
- [57]. Engle, M.A., Reyes, F.R., Varonka, M.S., Orem, W.H., Ma, L., Ianno, A.J., Schell, T.M., Xu, P. and Carroll, K.C., 2016. Geochemistry of formation waters from the Wolfcamp and "Cline"shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chemical Geology, 425, 76-92
- [58]. Engle, M.A., Cozzarelli, I.M. and Smith, B.D., 2014. USGS Investigations of Water Produced During Hydrocarbon Reservoir Development: U.S. Geological Survey Fact Sheet 2014-3104, 4 p., https://dx.doi.org/10.3133/fs20143104
- [59]. Eremenko, N. A. (Ed.), 1960. Geology of Petroleum, I Principles of Geology and Petroleum. Gostoptekhizdat, Moscow, 592 p.
- [60]. Erentöz, C. ve Ternek, Z., 1959. Türkiye sedimantasyon havzalarındapetrol imkânları. MTA Dergisi, 53, 21-36 (English version : Oil possibilities in the sedimentary basins of Turkey, Bull. Min. Res. Exp., 2-38)
- [61]. Fehn, U., U. Snyder, G.T. and Muramatsu, Y., 2007. Iodine as a tracer of organic material: <sup>129</sup>I results from gas hydrate systems and fore arc fluids. Journal of Geochemical Exploration. Volume 95, Issues 1-3, October-December 2007, Pages 66-80
- [62]. Fehn, U., Tullai-Fitzpatrick, S., Teng, R.T.D., Gove, H.E.,Kubik, P.W., Sharma, P. and Elmore, D., 1990. Dating of oil field brines using <sup>129</sup>I. Nuclear Instruments and Methods in Physics Research B52, 446-450
- [63]. Fisher, R.S. and Kreitler, C.W., 1987. Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, U.S.A. Applied Geochemistry, 2, 459-76
- [64]. Fontes, J.C. and Matray, J.M., Geochemistry and origin of formation brines from the Paris Basin, France: 2. Saline solutions associated with oil fields. Chemical Geology, 109, 177-200
- [65]. Franks, S.G. and Uchytil, S.J., 2016. Geochemistry of formationwaters from the subsalt TubularBells Field, offshore Gulf ofMexico: Implications for fluidmovement and reservoir continuity, AAPG Bulletin, 100(6), 943-967

- [66]. Frape, S.K., Fritz, p. and Mcnutt, R.H., 1984. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochimica et Cosmochimica Acta. 48, 1617-1627
- [67]. Gümüş, Ö. and Altan, Y., 1995. Gümüş, Ö. ve Altan, Y., 1995. Petrolün Tarihçesi ve Türkiye'de Açılan Petrol Kuyuları. Petrol İşleri Genel Müdürlüğü Yayını, 78 s. (History of Petroleum and Oil Wells Drilled in Turkey. General Directorate of Petroleum Affairs of Turkey, 178 p., Turkish - English)
- [68]. Hanshaw, B.B. and Hill, G.A., 1969. Geochemistry and hydrodynamics of the Paradox basin region, Utah, Colorado and New Mexico., Chemical Geology, 4, 263-294 Herndon, J.M., 2016. New concept on the origin of petroleum and natural gas deposits. J. Petrol. Explor. Prod. doi:10.1007/s13202-016-0271-5
- [69]. Herndon, J.M., 2011. Geodynamic basis of heat transport in the Earth. Curr. Sci. 101(11), 1440-1450
- [70]. Hitchon, B. and Billings, G.K. and Klovan, J.E., 1971. Geochemistry and origin of formation waters in the western Canadasedimentary basin-III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta. 35, 567-598
- [71]. Hoşhan, P., Çelik, S. and Çanga, B., 2008. Inspection and control of corrosion problemsfor production oil wells tubing and rod in Adıyaman oil fields. International Corrosion Symposium, October 22-25, 2008, Izmir, Turkey, pp. 13-20
- [72]. Hounslow, A.W. 1995. Water Quality Data: Analysis and Interpretation, CRC Lewis Publishers, 416 p.
- [73]. Houston, S.J., 2007. Formation waters in petroleum reservoirs; their controls and applications. The University of Leeds, School of Earth and Environment, PhD Thesis, 240 p.
- [74]. Issar, A., Rosenthal, O.E., Eckstein, O.Y. and Bogoch, R., 1971. Formation waters, hot springs and mineralizationphenomena along the eastern shore of the Gulf of Suez. Bulletin of the International Association of Scientific Hydrology.Bulletin, 16(3), 25-44
- [75]. Jamil, A.K., 2004. Hydrogeochemical indices for the prospecting of hydrocarbon and native sulphur deposits. Iraqi Jour. of Earth Sci., 4(2), 1-10
- [76]. Jensen, J., 1934. California oilfield waters. In Problems of Petroleum Geology, AAPG, 953-985
- [77]. Jiang, T., Xie, X., Chen, H., Wang, Z., Li, X., 2015. Geochemistry of pore water and associated diageneticreactions in the diapiric area of Yinggehai basin, Northwestern South China Sea. Journal of Earth Science, 26(3) 306-316, DOI: 10.1007/s12583-015-0526-y
- [78]. Jin, Z., Cao, J., Hu, W., Zhang, Y., Yao, S., Wang, X., Zhang, Y., Tang, Y. and Shi, X., 2008. Episodic petroleum fluid migration in fault zones of the northwestern Junggar Basin (northwest China): Evidence from hydrocarbon-bearing zoned calcite cement. AAPG Bulletin, 92, 9, 1225-1243
- [79]. Kartsev, A. A., Tabasaranskii, S. A., Subbota, M. I. and Mogilevsky, G. A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 1959, 238 p.
- [80]. Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J. and Fries, T.L., 1987. Geochemistry of metal-rich brines from central Mississippi SaltDome basin, U.S.A., Applied Geochemistry, 2, 543-561
- [81]. Kharaka, Y.K., and Hanor, J.S., 2007. Deep fluids in the continents: I. Sedimentary basins. Treatise on Geochemistry, Volume 5, 1-48
- [82]. Kireeva, T.A., 2010. Genesis of the Underground Water from the White Tiger Deposit, South Vietnam Shelf, in Relation to Its Petroleum Resource Potential. Moscow University Geology Bulletin, 65(4), 244-249
- [83]. Knipe, R.J., 1993. The influence of fault zone processes and diagenesis on fluid flow. In: Diagenesis and Basin Development (Ed. by E. D. Horbury and A. G. Robinson), Amer. Ass. Petrol. Geol. Studies in Geology, 36, 135-154
- [84]. Kokh, A.A. and Novikov, D.A., 2014. Hydrodynamic conditions and vertical hydrogeochemical zonalityof groundwater in the western Khatanga artesian basin. Water Resources, 41(4), 396-405
- [85]. Kurchikov, A.R. and Plavnik, A.G., 2009. Clustering of groundwater chemistry data with implications for reservoir appraisal in West Siberia. Russian Geology and Geophysics 50, 943-949
- [86]. Land, S.L. and Macpherson, G.L., 1992. Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin, AAPG Bulletin, 76(9), 1344-362
- [87]. Lavrushina, V.Y., Guliev, I.S., Kikvadze, O.E. Aliev, A.A., Pokrovskya, B.G. and Polyak, B.G., 2015. Waters from mud volcanoes of Azerbaijan:Isotopic-geochemical properties and generation environments. Lithology and Mineral Resources, 50, 1, 1-25
- [88]. Lawrence, S.R. and Cornfordt, C., 1995. Basin geofluids. Basin Research, 7, 1-7
- [89]. Macpherson, G.L., 1992. Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bulletin, 76(5), 740-757
- [90]. Mazor, E., 2004. Global WaterDynamics (Shallow and Deep Groundwater, Petroleum Hydrology, Hydrothermal Fluids, and landscaping). Marcel Dekker, Inc., 393 p.
- [91]. Mazzini, A., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T. and Banks, D., 2009. When mud volcanoes sleep: Insight from seep geochemistryat the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology, 26(9), 1704-1715
- [92]. Meinhold, R., 1972. Hydrodynamic control of oil and gas accumulation as indicated by geothermal, geochemical and hydrological distribution patterns, Trans. 8th World Petrol.Cong., 2, 55-66
- [93]. Mirnejad, H., Sisakht, V., Mohammadzadeh, H., Amini, A.H., Rostron, B.R. and G. Haghparast, G., 2011.Major, minor element chemistry and oxygen and hydrogen isotopiccompositions of Marun oil-field brines, SW Iran: Source historyand economic potential. Geological Journal, 46, 1-9
- [94]. Morad, S., Ismail, H.N.B., De Ros, L.F., Al-Aasms, I.S. and Serrhini, N.E., 1994. Diagenesis and formation water chemistry of Triassic reservoir sandstones fromsouthern Tunisia. Sedimentology, 41, 1253-1272
- [95]. Moran, J.E., Fehn, U., and Hanor, J.S., 1995. Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129 I. Geochim. Cosmochim. Acta 59, 5055-5069.
- [96]. Murthy, M.V.K., Padhy, P.K. and Prasad, D.N., 2011. Mesozoic hydrogeologic systems hydrocarbon habitat, Mandapeta-Endamuru area, Krishna Godavari Basin, India, AAPG Bulletin, 95(1), 147-167
- [97]. Novikov, D.A. and Shvartsev, S.L., 2009. Hydrogeological conditions of the Pre-Yenisei petroleum subprovince. Russian Geology and Geophysics, 50, 873-883
- [98]. Novikov, D.A., 2012. Hydrogeology of oil-and-gasbearing deposits of the Severnyi arch (Northern areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4, 521-535
- [99]. Novikov, D.A., 2013a. Hydrogeochemical features of petroleum-bearing deposits of the Yamal Peninsula.Oil and Gas Business, 1, 114-143
- [100]. Novikov, D.A., 2013b. Hydrogeology of the western part of the Yenisei-Khatanga regional trough.Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2\_2013.eng.pdf
- [101]. Okandan, E., Mehmetoğlu, T., Doyuran, V., Demiral, B., Parlaktuna, M., Gümrah, F., Kuru, E., Behlülgil, K., Karacan, Ö. and Karaaslan, U., 1994. Effect on Environment of Petroleum Exploration and Production Activities. The Scientific and Technical Research Council of Turkey, Project No.YBAG-0057, 92 p. (Unpublished, in Turkish)

- [102]. Oppo, D., Capozzi, R., Nigarov, A. and Esenov, P., 2014. Mud volcanism and fluidgeochemistry in the Cheleken Peninsula, western Turkmenistan, Marine and Petroleum Geology, 57, 122-134
- [103]. Oppo, D. and Capozzi, R., 2015. Spatial association of mud volcano and sandstoneintrusions, Boyadag anticline, westernTurkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136
- [104]. Ostroff, A.G., 1975. Subsurface water: Tool for petroleum exploration. Society of Petroleum Engineers Journal. 50-64
- [105]. Ozgun, H.,Ersahin, M.E.,Erdem, S.,Atay, B.,Sayili, S., Eren, E., Hoshan, P., Atay, D., Altinbas, M.,Kinaci, C. andKoyuncu, I., 2013. Comparative evaluation for characterization of produced water generated from oil, gas, andoil-gas production fields. Clean - Soil, Air, Water, 41(12), 1175-1182
- [106]. Palmer, C., 1924. California oilfield waters. Economic Geology, 19. 623-635
- [107]. Piper, A.M., 1944. A graphic procedure in the geochemical interpretation of water analyses. AmericanGeophysical Union Transactions, 25, 914-923.
- [108]. Pirson, S.J., 1942. Theoretical and economic significance of geodynamic prospecting. World Petrol., 13, 38-42
- [109]. Planke, S., Svensen, H., Hovland, M., Banks, D.A. and Jamtveit, B., 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 23, 258-268
- [110]. Purwaningsih, E. and Notosiswoyo, S., 2013. Hydrochemical study of groundwater in Sidoarjo mud volcanoarea, East Java Indonesia. Procedia Earth and Planetary Science, 6, 234-241
- [111]. Rachinsky, M.Z. and Kerimov, V.Y., 2015. Fluid Dynamics of Oil and Gas Reservoirs. Scrivener Publishing LLC John Wiley and Sons, Inc., 613 p.
- [112]. Rainwater, F. H. and White, W. F., 1958. The solusphere its inference and study. Geochim. Cosmochim. Acta, 14: 244-249
- [113]. Reich, M., Snyder, G.T., Álvarez, F., Pérez, A., Palacios, C., Vargas, G., Cameron, E.M., Muramatsu, Y. and Fehn, U., 2013. Using iodine isotopes to constrain supergene fluid sources in arid regions: Insights from the Chuquicamata Oxide Blanket. Economic Geology, 108, 163-171
- [114]. Risch, M.R. and Silcox, C.A., 2016. Groundwater Quality from PrivateDomestic Water-Supply Wells in theVicinity of Petroleum Production inSouthwestern Indiana. U.S. Geological Survey. Open-File Report 2016-1081, 29 p.
- [115]. Rogers, S.G., 1917. Chemical relations of the oil-field waters in San Joaquin Valley, California. United States Geological Survey. 119 p.
- [116]. Rosenthal, E., 1997. Thermomineral waters of Ca-chloride composition: review of diagnostics and of brine evolution. Environmental Geology, 32 (4), 245-250
- [117]. Rowan, E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T., Hammack, R.W. and Doughten, M.W., 2015. Geochemical and isotopicevolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99(2), 181-206
- [118]. Rueskamp, H., Ariki, J., Stieglitz, K. and Treskatis, C., 2014. Effect of oil exploration and production on the salinity of a marginally permeable aquifer system in the Thar Jath-, Mala- and Unity Oilfields, Southern Sudan. Zbl. Geol. Paläont. Teil I, 1, 95-115
- [119]. Qishun, F., Haizhou, M.A., Zhongping, L., Hongbing, T. and Tingwei, I., 2010. Origin and evolution of oilfield brines from Tertiary strata in western Qaidam Basin: Constraintsfrom 87Sr/86Sr, δD, δ18O, δ34S and water chemistry. Chin. J. Geochem., 29, 446-454
- [120]. Quadir, M.F., 2008. Formation Evaluation of Upper Qamchuqua Reservoir, Khabbaz Oil Field, Kirkük Area, Northeastern Iraq, University of Sulaimani, PhD. Thesis, 168 p.
- [121]. Sakroon, S.A., 2008. Effect of oilfeld brine on groundwater quality inMarmul area, Sultanate of Oman. United Arab Emirates University, MSc. Thesis, 146 p.
- [122]. Samedov, F. I. and Buryakovsky, L. A., 1956. Chemical composition and origin of formation waters of the Neftyanyye Kamni field. Trans. Azerbaijan Acad. Sci., 12(11), 841-848
- [123]. Schoeller, H., 1955. Geochemie des eaux souterraines. Rev. Znst. Fr. Pet., 10:181-213,219-246, 507-552
- [124]. Schoeller, H.J., 1962. Les Eaux Souterraines: Hydrologie Dynamique et Chimique : Recherche, Exploitation et Evaluation des Ressources. 642 p.
- [125]. Schoeneich, K., 1971. Indices of oil bearing deposits as based on the formation waters of Poland. Nafta (Pol.), 27, 154-157.
- [126]. Shouakar-Stash, O., Alexeev, S.V., Frape, S.K., Alexeeva, L.P. and Drimmie, R.J., 2007. Geochemistry and stable isotopic signatures, includingchlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Applied Geochemistry, 22, 589-605
- [127]. Smalley, E.C., Dodd, T.A., Stockden, I.L., Raheim, A. and Mearns, E.W., 1995. Compositional heterogeneities in oilfield formation waters:identifying them, using them. Cubitt, J.M. & England, W.A. (eds), 1995, The Geochemistry of Reservoirs, Geological Society Special Publication No.86, 59-69
- [128]. Stueber, A.M., Walter, L.M., Huston, T.J. and Pushkar, P., 1993. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochimica et Cosmochimica Acta. 57, 163-784
- [129]. Stueber, A.M. and Walter, L.M., 1991. Origin and chemical evolution of formation waters from Silurian-Devonian stratain the Illinois basin, USA. Geochimica et Cosmochimica Acta. 55, 309-325
- [130]. Sudo, Y., 1967. Geochemical study of brine from oil and gas fields in Japan. Journal of The Japanese Association of Petroleum Technologists. 32, 5, 286-296
- [131]. Sukharev, G.M., 1948. Hydrogeological conditions of formation of oil and gasdeposits in Tersk-Dagestan oil province. Groz. obi. izd-vo (in Kartsev, A. A., Tabasaranskii, S. A., Subbota, M. I. and Mogilevsky, G. A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation): Berkeley, Univ. Calif. Press, 1959, 238 p.
- [132]. Sulin, V.A., 1946. Waters of Petroleum Formations in the System of Nature Waters. Gostoptekhizdat, Moscow, 96 p. (in Russian)
- [133]. Snyder, G.T., Riese, W.C., Franks, S., Fehn, U., Pelzmann, W.L., Gorody, A.W. and Moran, J.E., 2003: Origin and history of waters associated with coal-bed methane: 129I, 36Cl, and stable isotope results from the Fruitland Formation, CO and NM. Geochim. Cosmochim. Acta, 67, 4529-4544
- [134]. Tan, H., Rao, W., Ma, H., Chen, J. and Li, T., 2011. Hydrogen, oxygen, helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam Basin, China. Journal of Asian Earth Sciences, 40, 651-660
- [135]. Tikhomirov, V.V., 2016. HydrogeochemistryFundamentals andAdvancesVolume 1: GroundwaterComposition and Chemistry. Scrivener Publishing LLC., 309 p.
- [136]. Tolstikhin, N. I., 1932. Toward question of graphical representation of analysis of waters. In: V. Golubyatnikov (Editor), Sampling of Mineral Deposits. Gosgeolizdat, Moscow-Leningrad, pp. 1-8.
- [137]. Toop, D.C. and Toth, J., 1995. Hydrogeochemical characterization offormation waters using ionic ratios, South-Central Saskatchewan. Seventh International Williston Basin Symposium, 313-319

- [138]. Tooth, J., 1987. Petroleum hydrogeology: a potential application of groundwater science. Journal of Geological Survey of India, 29(1), 172-179
- [139]. Vassoyevich, N. B. (Ed.), 1954. Companion of Field Petroleum Geologist, Part II. Gostoptekhizdat, Leningrad, 564 p.
- [140]. Vel'kov, A.M., 1960. Hydrochemical indicators of gas-oil productivity. Petroleum Geology: A digest of Russian literature on Petroleum Geology, 4, 9B, 539-541
- [141]. Uğur, Z. and Örgün, Y., 1996. The hydrogeochemistry of oilfield waters in Adiyaman Region. 11th Petroleum Congress of Turkey, Ankara, 182-189
- [142]. Uliasz-Misiak, B., 2016. Water accompanying hydrocarbon deposits as a potential source of iodine, lithium and strontium. Gospodarka Surowcami Mineralnymi Mineral Resources Management 32(2), 31-44
- [143]. Wang, X., Chen, J., Li, Z., Li, J., Wang, D., Wang, Y., Yang, C. and Cui, H., 2016. Rare gases geochemical characteristics and gas source correlation for Dabei gas field in Kuche depression, Tarim Basin. Energy Exploration & Exploitation, 34(1), 113-128
- [144]. Waples, D.W., 1985.Geochemistryin PetroleumExploration. D. Reidel Publishing Company. International Human Resources Development Corporation. 232 p.
- [145]. Weaver, T.R., Frape, S. K. and Cherry, J.A., 1995. Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. GSA Bulletin, 107(6), 697-707
- [146]. Wei, L., Limin, L. and Xiaohong, C., 1996. Geochemical characteristics of oilfield waters from the Turpan Depression, Xinjiang and theirpetroleum geological significance. Chinese Journal of Geochemistry, 15(4), 374-382
- [147]. Xia, W., Zhang, N., Yuan, X., Fan, L. and Zhang, B., 2001. Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin. AAPG Bulletin, 85(4), 715-736
- [148]. Xun, Z., Cijun, L., Xiumin, J., Qiang, D. and Lihomg, T., 1997. Origin of subsurface brines in the Sichuan basin, Groundwater, 35(1), 53-58
- [149]. White, D.E., 1957. Magmatic, connate and metamorphic waters. Geol. Soc. Amer. Bull., 68, 1659-1682
- [150]. Yang, S., 2017. Fundamentalsof Petrophysics. Springer-Verlag GmbH, 502 p.
- [151]. Younger, P.L., 2007. Groundwater in the Environment: An Introduction. Blackwell Publishing Ltd., 318 p.

Adil Özdemir " High Accuracy Estimation with Computer-Aided Hydrochemical Methods of Oil and Gas Deposits in Wildcat Sedimentary Basins. "IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) 6.4 (2018): 62-104.